

Example

Evaluate,

$$\int x^2 \sin x \ dx$$

Solution

This problem requires us to use integration by parts to solve it. Recall that the formula for integration by parts is

$$\int udv = uv - \int vdu$$

Therefore we choose

$$u = x^2$$
 $dv = \sin x \, dx$
 $du = 2x \, dx$ $v = -\cos x$

Substituting into the formula yields

$$\int x^2 \sin x \, dx = x^2 (-\cos x) - \int (-\cos x) 2x \, dx$$

$$\Rightarrow \int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx$$

The last integral in the above equation cannot be integrated directly so we must use integration by parts again to calculate $\int x \cos x \, dx$. We choose

$$u = x$$
 $dv = \cos x \, dx$
 $du = dx$ $v = \sin x$

Applying integration by parts we now have

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx$$
$$= -x^2 \cos x + 2 \left(x \sin x - \int \sin x \, dx \right)$$
$$= -x^2 \cos x + 2x \sin x + 2 \cos x + c$$

Problems

Evaluate the following:

1.
$$\int x \cos x \, dx$$
 [Solution: $x \sin x + \cos x + c$]

2.
$$\int x^2 \ln x \, dx$$
 [Solution: $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3 + c$]

3.
$$\int e^x \sin 4x \ dx$$
 [Solution: $\frac{1}{17} e^x \sin 4x - \frac{4}{17} e^x \cos 4x + c$]