

# Integration Techniques

#### Aim

To introduce different techniques of integration.

#### Learning Outcomes

At the end of this section you will be able to:

- Understand the process of integration by substitution,
- Understand the process of integration by parts.

### Integration by Substitution

When an integrand cannot be evaluated by inspection we require one or more special techniques. The most important of these techniques is the **method of substitution**, the inverse of the "Chain Rule" used in differentiation. When differentiating a composite function such as  $y = (3x - 4)^5$ , the *chain rule* is generally used, i.e.  $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ , where u = 3x - 4. Thus,

$$y = (3x - 4)^5 \qquad \Rightarrow y = u^5 \Rightarrow \frac{dy}{du} = 5u^4 \quad \text{and} \quad \frac{du}{dx} = 3$$
$$\Rightarrow \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= 5u^4.3$$
$$= 15u^4 = 15(3x - 4)^4.$$

Integration by substitution is very similar to reversing the *chain rule* and is used to change an integrand into a form that is easier to integrate.

#### Example 1

Find

$$\int (3x+1)^4 \, \mathrm{d}x$$

# even

$$\int (3x+1)^4 dx$$
Let  $u = 3x+1$ 

$$\Rightarrow \frac{du}{dx} = 3$$

$$\Rightarrow 3 dx = du$$

$$\Rightarrow dx = \frac{1}{3} du$$
Then  $\int (3x+1)^4 = \int u^4 \cdot \frac{1}{3} du$ 

$$= \int \frac{u^4}{3} du$$

$$= \frac{u^5}{15} + c$$

$$= \frac{(3x+1)^5}{15} + c$$

Example 2

Find

Let 
$$v = 1 + e^x$$
  
Then  $dv = e^x dx$ .  
Then  $\int e^x \sqrt{1 + e^x} dx = \int v^{1/2} dv = \frac{2}{3}v^{3/2} + c = \frac{2}{3}(1 + e^x)^{3/2} + c$ 

 $\int e^x \sqrt{1+e^x} \, dx$ 

#### Integration by Parts

We can use the method of substitution to integrate products such as  $\int 2x \cos(x^2 + 5) dx$ , where one of the factors is related to the derivative of the other. However, if the expression to be integrated is a product of two functions, e.g.  $\int x \sin x$ , where neither factor is related to the derivative of the other, we use a method of integration called **integration by parts**. This technique is in fact the inverse of the product rule for differentiation.

The product rule states that if u and v are two functions of x, i.e. u(x) and v(x), then

$$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$$



Integrating both sides with respect to x we get

$$\int \frac{\mathrm{d}}{\mathrm{d}x}(uv) \, \mathrm{d}x = \int u \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x + \int v \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$
$$\Rightarrow uv = \int u \, \mathrm{d}v + \int v \, \mathrm{d}u$$
$$\Rightarrow \int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Hence the formula for integration by parts is

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

(Note: This formula is given on page 42 of the Mathematics Tables).

The advantage of the formula for *Integration by parts* is that it enables us to express one integral of the form  $\int u \, dv$  in terms of another integral  $\int v \, du$  which could be easier to integrate. It should be noted that this approach will only work in certain cases.

When applying the formula for integration by parts to integrate a product, let one factor of the integrand be equal to u and the other equal to dv. The successful application of the formula depends on the correct choice of u, since this determines whether the second integral,  $\int v du$ , is easier to deal with than the first (i.e.  $\int u \, dv$ ).

Example 3

Find

$$\int x^4 \ln x \, \mathrm{d}x$$

Let  $u = \ln x$  and  $dv = x^4 dx$ .

(Note: If we let  $dv = \ln x \, dx$  it would result in the integral  $\int \ln x \, dx$  which is not easy to integrate.)

$$u = \ln x \text{ and } dv = x^4 dx$$
  

$$\Rightarrow \frac{du}{dx} = \frac{1}{x} \text{ and } \int dv = \int x^4 dx$$
  

$$\Rightarrow du = \frac{dx}{x} \text{ and } v = \frac{x^5}{5}$$
  
Recall  $\int u \, dv = uv - \int v \, du$   

$$\Rightarrow \int x^4 \ln x \, dx = \ln x \left(\frac{x^5}{5}\right) - \int \frac{x^5}{5} \cdot \frac{dx}{x}$$

## Calculus

$$= \frac{x^5}{5} \ln x - \int \frac{x^4}{5} \, \mathrm{d}x$$
$$= \frac{x^5}{5} \ln x - \frac{x^5}{5.5} + c$$
$$= \frac{x^5}{5} \ln x - \frac{x^5}{25} + c.$$

Important:

For definite integrals, the rule for integration by parts becomes

$$\int_{a}^{b} u \, \mathrm{d}v = uv \Big|_{a}^{b} - \int_{a}^{b} v \, \mathrm{d}u$$

## **Related Reading**

EVIM

Jacques, I. 1999. Mathematics for Economics and Business. 3<sup>rd</sup> Edition. Prentice Hall.

Morris, O.D., P. Cooke. 1992. Text & Tests 5. The Celtic Press.

Stewart, J. 1999. Calculus. 4<sup>th</sup> Edition. Brooks/Cole Publishing Company.