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Knot theory is now very important in physicists' theory of matter and plays an 

important role in the development of gauge theories and super-string theory. In a sense we 
have come full circle, since the theory was first developed in a systematic way as a theory 
of matter by 19th century Scottish physicists.  
 
1. Tait and Maxwell 
 

We start with the interaction between two of these 
physicists: Tait and Maxwell. It was an interaction which began 
while they were at school. The two were almost exactly the 
same age, Tait born on 28 April 1831 in Dalkeith, Scotland, 
while Maxwell was born on 13 June 1831 in Edinburgh, 
Scotland. Both attended Edinburgh Academy, entering in the 
autumn of 1841. However Maxwell enrolled late and had to be 
put into the year ahead of what would have been the right one 
for his age. Tait was therefore in the class below Maxwell but 
the two soon became close friends. 

     Peter Guthrie Tait 
 

 
Perhaps the fact that Maxwell was in a class higher 

affected his performance, or perhaps it was the fact that the shy 
country boy, nicknamed "Dafty", took a while to adjust to the 
school that meant that Tait's school career was, at least initially, 
much more successful than Maxwell's. Tait wrote of Maxwell: 
 

At school he was at first regarded as shy and rather dull. he made 
no friendships and spent his occasional holidays in reading old 
ballads, drawing curious diagrams and making rude mechanical 
models. This absorption in such pursuits, totally unintelligible to 
his schoolfellows, who were then totally ignorant of mathematics, 
procured him a not very complimentary nickname. About the 
middle of his school career however he surprised his companions 
by suddenly becoming one of the most brilliant among them, 
gaining prizes and sometimes the highest prizes for scholarship, 
mathematics, and English verse. From this time forward I became 
very intimate with him, and we discussed together, with 
schoolboy enthusiasm, numerous schoolboy problems, among 
which I remember particularly the various plane sections of a ring 
or tore, and the form of a cylindrical mirror which should show 
one his own image unperverted. 

   James Clerk Maxwell 
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There is a notebook in which Tait and Maxwell 
recorded the "schoolboy problems" he referred to in the 
above quote. Much of the manuscripts are written in 
beautiful calligraphy. Great care has been taken with these 
parts and pencil lines have been drawn in and then 
removed to ensure that all lines are straight and are 
perfectly left justified. Most of the manuscripts are by Tait 
and signed 'fecit P G Tait' with a date. Some, in particular 
the ones that Tait refers to above, are by Maxwell and 
signed and dated by him. For example the manuscript on 
the Conical Pendulum is signed by Maxwell and dated 25 
May 47. There are some parts of the notebook written in 
ordinary handwriting rather than the calligraphy of much 
of the notebook. 

The friendship between Tait and Maxwell continued 
at Edinburgh University and after that, although they saw 
each other infrequently, they corresponded regularly. The 
letters are filled with fun and clever jokes showing the great 
warmth between the two. There is no sign that this warmth 
was any the less after they competed for the Edinburgh 
chair. The Chair of Natural Philosophy at the University of 
Edinburgh became vacant in 1859 when J D Forbes moved to t
Tait was a candidate for the chair but so was Maxwell. 
outstanding scientific achievements. When the Edinburgh pap
result it noted that Tait had been chosen in preference to Maxw
 

... there is another quality which is desirable in a Professor in a
the power of oral exposition proceeding on the supposition of im
ignorance on the part of pupils.  

 
The claim that Tait was the better person to teach poorly qu
fair one and, of course, Tait's personality meant that he made
appointing committee rather than the much more reserved Ma
 
2. Knots 
 

Although van der Monde had written about knots in 1
his note-books) had thought about them as early as 17
consequences of current flowing in twisted curves, the first s
by Listing in his book Vorstudien zur Topologie published in
topological concepts from his supervisor, Gauss. This work w
Maxwell until several years later. The start of Tait's intere
Helmholtz. In 1858 Helmholtz published an important pap
An extract from Tait and 
Maxwell's schoolboy 

notebook 
he University of St Andrews. 
Tait won despite Maxwell's 
er, The Courant, reported the 
ell since:  

 University like ours and that is 
perfect knowledge or even total 

alified pupils was certainly a 
 a stronger impression on the 
xwell. 

771 and Gauss (according to 
94 and had looked at the 
ignificant work on knots was 
 1847. Listing had learnt of 
as not seen by either Tait or 
st was through a paper by 
er in Crelle's Journal on the 



 3

motion of a perfect fluid. Helmholtz's paper Uber Integrale der hydrodynamischen 
Gleichungen, welche den Wirbelbewegungen entsprechen began by decomposing the motion of 
a perfect fluid into translation, rotation and deformation. It was this aspect which first 
interested Tait who saw that by using Hamilton's quaternions he could express the fluid 
velocity as a "vector function". Tait had read Hamilton's Lectures on quaternions five years 
earlier. The ideas in Helmholtz's paper which eventually led Tait to study knots concerned 
vortex lines and vortex tubes. Helmholtz defined vortex lines as lines coinciding with the 
local direction of the axis of rotation of the fluid, and vortex tubes as bundles of vortex lines 
through an infinitesimal element of area. Helmholtz showed that the vortex tubes had to 
close up and also that the particles in a vortex tube at any given instant would remain in 
the tube indefinitely so no matter how much the tube was distorted it would retain its 
shape.  
 

Helmholtz was aware of the topological ideas in his paper. He described his 
theoretical conclusions regarding two circular vortex rings with a common axis of 
symmetry in the following way: 
 

If they both have the same direction of rotation they will proceed in the same sense, and the ring 
in front will enlarge itself and move slower, while the second one will shrink and move faster, if 
the velocities of translation are not too different, the second will finally reach the first and pass 
through it. Then the same game will be repeated with the other ring, so the ring will pass 
alternately one through the other.  

 
As we have mentioned, Tait's first interest in Helmholtz's paper was because he saw 

applications of quaternions there. It was not until 1867 that Tait verified Helmholtz's 
theoretical claims regarding two circular vortex rings with experiments with smoke rings. 
 

These experiments were to have a major influence on 
the Scottish physicist and friend of Tait, William Thomson 
(later Lord Kelvin). Tait and Thomson had cooperated on a 
major work: A treatise on Natural Philosophy in the 1980s. 
Thomson saw the permanence of form as a possible 
explanation for atoms and therefore explain the way that 
the different elements could be built. Although we now 
know that Thomson was completely wrong with his theory 
of vortex atoms, it led Tait to consider knots. The vortex 
atoms, being built from the aether, required no special 
material. The different elements were accounted for by 
atoms composed of different knots or links. Oscillations of 
the knots would, Thomson believed, explain the spectral 
lines which were characteristic of the different elements. 

William Thomson:  
Lord Kelvin 
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3. Enter Maxwell 
 

Maxwell had entered the discussions which went on in letters exchanged by the 
three Scottish mathematical physicists. He was interested in knots because of 
electromagnetic considerations and in a letter to Tait written on the 4 December 1867 he 
rediscovered an integral formula counting the linking number of two closed curves which 
Gauss had discovered, but had not published, in 1833. Maxwell also gave equations in 
three dimensions which represented knotted curves.  

Maxwell stated that he had amused himself with knotted curves for a day or two. This 
couple of days was amazingly fruitful . 

 
 
He gave the three 
examples shown at the 
right 
 
.  

 
The first of these is a pair of linked curves whose linking 

number (which Maxwell defined using an integral related to his 
electromagnetic theory) is zero. This is now called the Whitehead 
link after J H C Whitehead who rediscovered it in the 1930’s. An 
equivalent version is shown on the right. 
 
 

The second example is called the Borromean rings (after the Italian family which 
features them on its mediaeval coat of arms). The configuration is inseparable even though 
each pair of rings is unlinked. 
 

Maxwell gives an equation for the third example: a simple 
overhand knot and remarks that changing the sign of one of the 
parameters in the equation will change a left-handed into a right-
handed example — and notes that these are distinct.  
Similar equations can be used to plot the whole family of torus 
knots. 
 

 
 

Curves x = sin 2p, y = cos 3p, z = sin(5p + γ) for 0 ≤ p ≤ 2π and various values of γ. 
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Maxwell then shows how starting from the equation of a Lissajous figure one could 
construct the set of closed curves shown above. The first (γ = 0) is unknotted and the others 
(γ = π/3 and 7π/12) are in fact the same knot (“knotted in a different way but to the same 
degree”) — though that is not trivial to prove. 
 

 
He also notes that this knot can be made in a different way by giving a doubled rope 

4
1

2
π twists and then linking the ends together. The mathematician John Conway 

discovered a similar systematic way of constructing knots in the 1950’s. 
 

Thus in a couple of days, Maxwell had 
anticipated much of what would happen in 
knot theory over the next 80 years. 
 

Maxwell, in three unpublished 
manuscripts, considered a theory of knots. In 
the first he considered two-dimensional 
projections of links and devised a way of 
coding the diagrams to indicate which curve 
was above and which below at crossings on 
the projections. This is essentially what is now 
called the Dowker notation introduced by 
Hugh Dowker in 1983. 
 

He then looked at ways of modifying the diagrams without changing the link or 
knot. Maxwell showed that every knot projection had a region bounded by less than four 
arcs. For a region bounded by one arc he noted that the region could be eliminated by 
uncoiling the curve. For regions bounded by two arcs, he noted that there were two cases, 
one where the arcs could be separated and the region eliminated, the other where this 
could not be done without making changes in other parts of the diagram. For regions 
bounded by three arcs Maxwell noted that again there were two cases: 
 

In the first case any one curve can be moved past the intersection of the other two without 
disturbing them. In the second case this cannot be done and the intersection of two curves is a 
bar to the motion of the third in that direction.  

 
Although his approach contained no mathematical rigour, still it is interesting to note that 
at this early stage Maxwell had defined the "Reidemeister moves" which would be shown 
to be the fundamental moves in modifying knots in the 1920s.  
 



 6

These manuscripts by Maxwell were not published at the time they were written 
despite Tait asking him to submit his ideas on knot theory to the Royal Society of 
Edinburgh for publication. However, more than 100 years after they were written, these 
manuscripts were published. There are three manuscripts on knots and some time between 
the second, which Maxwell wrote in October 1868, and the third, which he wrote on 29 
December 1868, he had read Listing's 1847 paper Vorstudien zur Topologie for in the third 
manuscript he lists Listing's main results. In February 1869 Maxwell presented an account 
of Listing's topological ideas to the London Mathematical Society. 
 

Before leaving Maxwell's contribution we note his admiration for the work of Tait 
expressed in a letter of 1871 to Thomson: 
 

You should let the world know that the true source of mathematical methods as applicable to 
physics is to be found in the Proceedings of the Royal Society of Edinburgh. The volume- surface- 
and line-integrals of vectors and quaternions and their properties as in the course of being 
worked out by T' (Tait) is worth all that is going on in other seats of learning. 

 
4. Tait classifies knots 
 

By 1876 Thomson had made little progress with his ideas of vortex atoms. There 
were many problems in his way and indeed by this stage he had not succeeded in 
mathematically describing how two vortex rings would interact if they did not have a 
common axis of symmetry much more the way that knotted vortices would interact. Also 
there was no insight into vortex atoms through lists of knots which, in Thomson's theory, 
would explain the chemical elements. Tait decided to embark on a classification of plane 
closed curves in 1876, writing in a report to the British Association for the Advancement of 
Science: 
 

The development of this subject promises absolutely endless work - but work of a very interesting 
and useful kind - because it is intimately connected with the theory of knots, which (especially as 
applied in Sir W Thomson's Theory of Vortex Atoms) is likely soon to become an important 
branch of mathematics.  

 
 

Now by looking at plane closed curves Tait was 
considering alternating knots, namely those which 
when traversing the projection in 2-dimensional space 
the crossings go alternately over and under. Choosing 
a starting point and a direction to traverse the path, he 
labelled the 
first, third, fifth etc. points by A, B, C etc. A knot with 
n crossings A, B, C, ... would then be described by the 
sequence of crossings of length 2n where each of A, B, 
C, ... occurred exactly twice when the knot was 
 

A knot with scheme ACBDCADB. 
It has reduced scheme CDAB 

(the letters in the even places). 
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traversed. Tait called the sequence the "scheme of the knot". 
 Again this is essentially the Dowker notation.  

 
Example of a nugatory crossing. 

There were then two basic problems to 
solve. Firstly which reduced schemes correspond 
to a knot, and secondly how could it be 
determined when two knots described by such 
reduced schemes were "the same". However 
there were some other problems, for example 
although reduced scheme of length 5, say, might 
represent a knot, it might be able to represent it 
with less than 5 crossings. It might be a knot 
which could be reduced to one with fewer 
crossings. For example if the projection contained 
a crossing which divided the curve into two parts which did not intersect, then this was a 
nugatory crossing which could be removed by a twist.  
 

Tait conjectured that an alternating diagram without nugatory crossings would 
contain the minimum number of crossings. This became known as Tait's first conjecture. 
He gave a "proof" which showed that only nugatory crossings allowed the number of 
crossings to be reduced. However this is not good enough for there might be a sequence of 
moves which first increase the number of crossings, then further moves reduce to a fewer 
number of crossings than were there originally. If we interpret Tait in a form that he seems 
to have used the conjecture, namely that two alternating diagrams without nugatory 
crossings representing the same prime knot are related by a sequence of twists, then we get 
what has been called Tait's second conjecture. This was not finally proved until 1993.  
 

Without any rigorous theory, which would have been well beyond nineteenth 
century mathematics, Tait began to classify knots using his mathematical and geometrical 
intuition. He knew that what was really required was a knot invariant, that is something 
which would be independent of the way that the knot was represented in two dimensions. 
First he looked for numerical invariants and considered the minimal number of crossings 
that a given knot might have in a two dimensional representation. This would lead him to 
Tait's first conjecture for alternating knots.  
 

Another idea which seemed promising 
to Tait was the "beknottedness" which he 
defined as follows. Travel round the knot 
diagram and immediately after each crossing 
throw a copper coin to the left and a silver 
coin to the right if the crossing was above, or 
throw a silver coin to the left and a copper 
coin to the right if the crossing was below.  
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Tait then defined "beknottedness" (now known as the twist number) as the excess of 
silver crossings over copper ones. If only diagrams without nugatory crossings were 
considered then Tait believed that this was a knot invariant. In fact it is not, but for 
alternating knots, it is an invariant and this fact is a consequence of Tait's second conjecture 
(a theorem since 1993). He tried other more obviously physical ideas such as considering 
the knot as a circuit and looking at the work done by a magnetic particle carried by a 
current in the knot. He tried another idea which at first looked very promising to him, 
namely the minimal number of crossings which required to be changed for under to over 
(or visa-versa) to unknot the knot. His first thought was that this would be half the 
beknottedness. He soon saw that this was not so. Seeing that the two concepts were distinct 
Tait changed his definitions and called the minimal number of crossings which required to 
be changed to unknot the diagram the beknottedness and he called the minimal number of 
crossings the knottiness.  
 

By 1877 Tait had classified all knots with seven crossings but he stopped there. He 
returned to the topic of knots in his address to the Edinburgh Mathematical Society in 1883: 
 

We find that it becomes a mere question of skilled labour to draw all the possible knots having 
any assigned number of crossings. The requisite labour increases with extreme rapidity as the 
number of crossings is increased. ... I have not been able to find time to carry out this process 
further than the knots with seven crossings. ... It is greatly desired that someone, with the 
requisite leisure, should try to extend this list, if possible up to 11 ...  

 
5. Kirkman lends a hand 
 

Rev Thomas Kirkman 

Thomas Kirkman read the text of Tait's address and began 
to work on classifying knots with more than seven crossings. He 
sent Tait his results on knot projections with up to nine crossings 
in May 1884 but he had not looked at the problem of deciding 
which of the projections led to equivalent knots. Tait worked on 
this side of the problem and, considering only alternating knots, 
solved the equivalence problems within a few weeks. Tait 
seemed to know how to tell whether two knots were equivalent 
without rigorous methods. He states this quite clearly in the 
paper he wrote tabulating the knots where he says that his 
methods have: 
 

... the disadvantage of being to a greater or less extent tentative. Not that the rules laid down ... 
leave any room for mere guessing, but they are too complex to be always completely kept in view. 
Thus we cannot be absolutely certain that by means of such processes we have obtained all the 
essentially different forms which the definition we employ comprehends.  

 
Despite the problems Tait knew exactly what he was doing for, remarkably, his 

tables are correct. When Kirkman sent him all knot projections with 10 crossings in January 
1885 again Tait found all in equivalent knots. The tables were printed in September 1885 
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and again they are completely correct. By then he had received from Kirkman 1581 knot 
projections with 11 crossings and this time Tait felt that he did not have the time to solve 
the equivalence problem for these. However by this time an American mathematician and 
engineer Charles N Little had sent Tait knot tables which he had calculated and Little 
began to extend the tables to knots other than alternating ones, and to knots with eleven 
crossings. 

 
6. Continuing the story of Knot Theory 

 
Thomson's vortex atoms were of course abandoned (in favour of the "bee in the 

cathedral" theory of a nuclear atom) but knot theory continued to fascinate pure 
mathematicians. 

Poincaré introduced the Fundamental group about 1900 and shortly afterwards it 
was applied to knot complements. Dehn in 1910 introduced generators and relations into 
group theory to handle the groups that arose in this way. In 1928 Alexander used this 
algebraic machinery to define the Alexander polynomial — a knot invariant, but not a 
complete one. 

Then not much happened for a long time, until in the 1960s John Conway devised a 
new method ("tangles") of making and describing knots and extended the Alexander 
polynomial to links. This led to new computational methods for classifying knots. Indeed, 
Conway was able to check the calculations which had taken Tait seven years to do in a 
single afternoon. 

In 1984 Vaughan Jones was working on von Neumann algebras and as an offshoot 
of his theory devised a two-variable generalisation of the Alexander-Conway polynomial. 
This was immediately generalised by several different groups to the HOMFLY polynomial 
(named after the initial letters of its inventors). 

Because of the way to Jones polynomial arose, it and its generalisations have 
implications in statistical mechanics and quantum mechanics. In 2004 Michael Atiyah won 
the first Neils Abel Prize for work he did with Israel Singer on their Index theorem. Atiyah 
has now retired from being Master of Trinity College Cambridge (Maxwell's college) and is 
now working in the James Clerk Maxwell Building of Edinburgh University. One of his recent 
works is an influential book The Geometry and Physics of Knots describing how the recent 
advances in knot theory have influenced physicists' attempts to explain their universe. Tait, 
Maxwell and Thomson would be very pleased to learn that knot theory has now returned 
to the centre of physical science where they first found it! 
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