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Abstract 
 

The lack of original sources opens the door for different, even opposite interpretations of the 
possible train of thought behind the above results. It is widely accepted that the discovery is 
due to the early Pythagoreans who tried to find a common measure for the diagonal and side 
of the square. It turned out that they were incommensurable meaning in modern sense, that 
�2 is not a rational number. Further, we know from Proclus that the Pythagoreans used 
proposition II.10 of the Elements to approximate the diagonal-side ratio (�2) by rational 
numbers. 

We will show that both the discovery and the approximation can be proved from the same 
figure using only II.10 unlike the other deductive reconstructions. From our method two 
alternating approximations can be deduced leading to two lower and upper approximations of 
�2 by non-periodical decimal fractions. This geometrical approach helps the teacher to form 
a descriptive idea on the abstract concept of irrational number, and especially on Cantor-
axiom. 

 
History of the problem 

 
The emergence of the above problems go back to pre-Platonic times, namely to the 

Pythagoreans, who “were the first to take up mathematics” according to Aristotle [Met 985b]. 
The problem is that we have no original sources from this period, only some fragments quoted 
by later commentators, especially from Proclus. Besides, the works of Plato and Aristotle 
contain some mathematical allusions, but they are sometimes obscure, and even have different 
translations. 

In Pythagorean mathematics the reciprocal or successive subtraction method (antanairesis) 
seems to play an important role. This method served for finding the greatest common divisor 
of two “numbers” meaning always positive integers for the Greeks, and represented by pebble 
rows in earlier times. Today the method is known as Euclidean algorithm for finding the 
greatest common divisor of two numbers. The algorithm for numbers is clearly finite. The 
Greeks called its result the common measure of the original two numbers. By this method 
every two numbers proved to be commensurable. The name “common measure” shows that 
antanairesis was connected later to measurement and geometry, too. To support our view let 
us quote the words of Proclus and Diogenes Laertius:  

“The theory of commensurable magnitudes is developed primarily by arithmetic and then by 
geometry in imitation of it. This is why both sciences define commensurable magnitudes as 
those which have to one another the ratio of a number has to a number, and this implies that 
commensurability exists primarily in numbers.” [5, p. 49] 

“The Pythagoreans were the first to make inquiry into commensurability, having first 
discovered it as a result of their observation of numbers; for though the unit is a common 
measure of all numbers, they could not find a common measure of all magnitudes.” [6, p. 
215] 

 Thus we can conclude that the Pythagoreans wanted to find the common measure of the 
diagonal (b) and side (a) of a square by their antanairesis method. Further, they were 
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convinced that some common measure had to exist according their number based philosophy: 
everything has a number; every ratio can be expressed as the ratio of two numbers. When 
some of them (Hippasus?) discovered that the antanairesis is not finite but cyclical, it caused a 
shock for them. There are different reconstructions in literature of this discovery. 
  

Usual deductive reconstructions of discovery 
 

To show that the antanairesis is cyclical, Figure1 is normally used in literature. The 
similarity of the triangles AEB1 and ABC based on the equality of their triangle shows that 
the procedure is endless. Alternatively, since the triangles CB1E and CEB are congruent, so 
B1E=EB, consequently AE=A1C which proves also that the antanairesis is cyclical. 
These proofs are trivial for us but not for the early Pythagoreans who probably have not a 
proper similarity concept namely an exact criteria for equal ratio. In the Elements the 
similarity of rectilineal figures is defined only in Book VI based on the concept of 
“proportionality” formulated in definition 5 of Book V. Further, the criterion by which the 
congruency of the two triangles in question can be verified was not known for them. In 
proposition IV.12, even Euclid used Pythagorean Theorem to show the equality of two lines 
as B1E and EB, instead of the criterion 

 
 

                                                               
 
 
 
 
 
 
  
                                 

Steps 
 

Longer Shorter Difference 

   1  AC=b1 AB=CB=CB1=a1 AC-B1C= 
AB1=a 

2 B1C A B1= 
A1 B1

B1C-A1 B1= 
A1C 

3 
 
 

A1C=AE=b A1 B1=AB1 Step 1 again  
 
Figure 1. 

Antanairesis for the square 
 

Remark that the cyclic antanairesis did not convince the Pythagoreans on the 
incommensurability of the diagonal and side of the square. As philosophers they were 
atomists so denied the infinite divisibility of the line, generally of continuous quantities. The 
belief of the existence of a smallest measure was common that time.  “For it must seem to 
everyone a matter for wonder that there should exist a thing which is not measured by the 
smallest possible measure?”- writesAristotle in  Metaphysics 983a, see [1]. We claim that the 
first generally accepted proof must have been the indirect one, Aristotle refers to in his Prior 
Analytics 41A23-30 [1]: “the diagonal of the square is incommensurable with the side, 
because odd numbers are equal to evens if it is supposed to be commensurate.” This logical 
proof was included in some edition of the Elements, and does not use antanairesis or any 
geometrical tool except the Pythagorean Theorem. This proof “bypassed” the problem of 
infinite divisibility. 

One can find the train of thought of this proof in many high school textbooks, but without 
any geometrical tools. The original Greek proof seems to be more didactical. Suppose that b 
and a commensurable, and denote by e their greatest common measure found by antanairesis. 
Then b and a are some multiple of e, say b=ne, a=me. Here (n, m)=1, so at least one of them 
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must be odd. By the Pythagorean Theorem the square on b is double of the square on a, i.e. 
b2=2a2, consequently n2=2m2. There follows from this equality that n is even (say n=2k), 
hence m is odd. Substituting n=2k in the equality, then simplifying by 2 we get 2k=m 
meaning that m is even, too, which is impossible. 

 
Discovery of incommensurability by II.10 

 
It is generally accepted that the theorems of Book II are very olds. Some say they are 

Babylonian algebraic identities in geometrical forms, which were well known for the 
Pythagoreans. We think that the Pythagoreans used to prove that the antanairesis is cyclic for 
the diagonal and side of the square; moreover, they discovered it in trying to prove it (see 
Figure 2). 

 
 One can guess from the figure that A1C and B1A1 again the 

diagonal (diameter) and side of a square again, so Step 3 
repeats Step 1 meaning that the antanairesis is not finite. To 
verify this conjecture we have to prove that AC2=2CB1

2 

implies A1C2=2A1B1
2; or shortly that b1

2=2a1
2 implies b2=2a2. 

To use up the condition, construct the right triangle CFB1. 
The triangles B1CF and ABC are congruent by proposition 
I.4, so FB1=AC. Draw a line parallel to B1F through A1. Then 
FB1=GE easily follows form the simple properties of 
parallelograms found in Book I.  Now, apply the Pythagorean 
Theorem for AG in the triangles ACG and AEG: 

                                                      AG2=AE2+EG2=2a2+2a1
2; AG2=AC2+CG2=b1

2+b2,  
                                                   so 
     Figure 2. Prop. II.10                              2a2+2a1

2= b1
2+b2, where  a1=b+a, b1=2a+b, 

 which is II.10 in algebraic form.  By II.10, b1
2=2a1

2 implies 
b2=2a2, which proves our conjecture.  

Euclid formulated this theorem geometrically: “If a straight line be bisected, and a straight 
line be added to it in a straight line, the square on the whole with the added straight line and 
the square on the added straight line both together are double of the square on the half and of 
the square described on the straight line made up of the half and the added straight line as on 
one straight line.” His proof is identical with ours except he used only the polygon AEA1CG 
from our figure. Euclid’s method was deductive, so he did not say anything the inductive 
background of this theorem. Further, he nowhere used II.10 in the Elements, so its inclusion 
seems useless.  

 
Approximation of �2 by II.10 

 
Let us quote two ancient sources to illustrate that the Pythagoreans kept trying to express 

the b/a ratio by numbers even after they proved to be incommensurable. Theon Smyrna writes 
on their motivation and approximating numbers as follows [6]: 

“Even as numbers are invested with power to make triangles, squares, pentagons and 
the other figures, so also we find side and diameter ratios appearing in numbers in 
accordance with the generative principles; for it is these which give harmony to the figures. 
Therefore since the unit, according to the supreme generative principle, is the starting point 
of all the figures, so also in the unit will be found the ratio of the diameter to the side. To 
make this clear, let two units be taken, of which we set one to be a diameter and the other a 
side, since the unit, as the beginning of all things, must have it in its capacity to be both side 
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and diameter. Now let there be added to the side a diameter and to the diameter two sides, for 
as often as the square on the diameter is taken once, so often is the square on the side taken 
twice. The diameter will therefore become the greater and the side will become the less.” 

The second source, Proclus, besides confirming Theon’s words, speaks about the role of 
II.10 in this matter, as well as on the accuracy of the approximation [5]: 

“…in the squares whose sides they are, [the square of the diagonal] is either less by a unit 
or more by a unit than double ratio which the diagonal ought to make: more, as for instance 
is 9 than 4, less as is for instance 49 than 25. The Pythagoreans put forward  the following 
kind of elegant theorem  of this, about the diagonals and sides, that when the diagonal 
receives the side of which it is diagonal it becomes a side, while the side, added to itself and  
receiving in addition its own diagonal, becomes a diagonal. And this is demonstrated by lines 
(grammikōs) through the things in the second [book] of Elements by him “ 

Really, if we start from a smaller square where b2=a2, then b1
2=2a1

2 follows for the bigger 
square with b1=2a+b and a1=b+a, from II.10. Proclus’ words contains the relations a1=b+a, 
b1=2a+b shown in Figure 2, that lead to the following recursion formulas 

an+1=an+bn, bn+1=2an+bn , n ≥ 0, a0=a, b0=b. 
Theon of Smyrna took a=b=1 to start the approximation of the ratio b/a by bn/an. 

Another possibility is to start with a=1, b=2, since the length 2  of b is between 1 and 2. The 
following table shows the corresponding values for an, bn in both cases, as well as their 
squares and the approximating values bn/an: 

 
n an bn an

2 bn
2 bn/ an an bn an

2 bn
2 bn/ an

0 1 1 1 1 1/1 1 2 1 4 2/1 
1 2 3 4 9 3/2 3 4 9 16 4/3 
2 5 7 25 49 7/5 7 10 49 100 10/7 
3 12 17 144 289 17/12 17 24 289 576 24/17 
4 29 41 841 1681 41/29 41 58 1681 3364 58/41 
5 70 99 4900 9801 99/70 99 140 9801 19600 140/99 
 

 
The approximation values 3/2, 7/5, 17/12 from Case 1 were known in ancient Greek, 

and can be found in some sources: Plato, Theon, Proclus, etc. The situation is different with 
Case 2 values: there are indirect evidences for their usage.  One can find indirect allusions of 
the use of 10/7 in Codex Constantinopolitanus. Further, Health wrote in [4]: “Heron takes 10 
as an approximation of 7  or 98 “. This clearly shows the use of 10/7 by Heron. Remark, that 
the Case 1 values are called side and diagonal numbers, too. For more details, see [3]. 

The relation 2an
2-bn

2=( -1)n+1  can be guessed for Case 1. Proclus also referred to this 
connection in the quoted section. By altering this relationship we can show that Case 1 values 
really approximate alternatively �2: 

2n
2-bn

2=( -1)n+1  �     ( ) 12

2 2

1
2 0

n
n

n n

b
a a

+−
− = → ,  as n��. 

Thus �2 can be understood as the single seed of the following series of nested intervals 
according to Cantor’s axiom: 

[1; 3/2=1,5], [7/5 =1,4; 17/12=1,416], [41/29=1,413; 99/70=1,414],….. 
Similarly, Case 2 leads to another series of nested intervals determining also �2 

[4/3=1,3; 2], [24/17=1,411;10/7=1,428], [140/99=1,4141; 58/41=1,4146,],…. 
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