
INTRODUCTION TO MATLAB
Gerardo Rodriguez

Universidad de Salamanca

MATLAB (MATrix LABoratory) is an interactive software system for numerical
computations and graphics. As the name suggests, MATLAB is especially designed for
matrix computations: solving systems of linear equations, factoring matrices, and so
forth. In addition, it has a variety of graphical capabilities, and can be extended through
programs written in its own programming language.

MATLAB is built around the MATLAB language. The simplest way to execute this
code is to type it in at the prompt,>>, in the Command Window, one of the elements of
the MATLAB Desktop. Sequences of commands can be saved in a text file, typically
using the MATLAB Editor, as a script or encapsulated into a function, extending the
commands available.

In the following sections, you will have an introduction to some of the most useful
features of MATLAB. There are plenty of examples. The best way to learn to use
MATLAB is to read this while running MATLAB, trying the examples and
experimenting.

Entering vectors and matrices.
The basic data type in MATLAB is an n-dimensional array of double precision
numbers. The new data types include structures, classes, and “cell arrays”, which are
arrays of possibly different data types.

The following commands show how to enter numbers, vectors and matrices, and assign
them to variables

>> a = 2 //scalar

If you press enter, you will see:

a =
 2

>> x = [1;2;3] //Vector

Press enter,

x =
 1
 2
 3

>> A = [1 2 3;4 5 6;7 8 0] //Matrix

Press enter,

A =
 1 2 3
 4 5 6
 7 8 0

Notice that the rows of a matrix are separated by semicolons, while the entries on a row
are separated by spaces (or commas).

A useful command is “whos”, which displays the names of all defined variables and
their types:

>> whos
 Name Size Bytes Class

 A 3x3 72 double array
 a 1x1 8 double array
 x 3x1 24 double array

Grand total is 13 elements using 104 bytes

Note that each of these three variables is an array; the “shape” of the array determines
its exact type. The scalar ‘a’ is a 11× array, the vector ‘x’ is a array, and the
matrix ‘A’ is a array (see the “size” entry for each variable).

13×
33×

One way to enter a n-dimensional array (n>2) is to concatenate two or more (n-1)-
dimensional arrays using the cat command. For example, the following command
concatenates two 23× arrays to create a 223 ×× array:

>> C = cat(3,[1,2;3,4;5,6],[7,8;9,10;11,12])

C(:,:,1) =
 1 2
 3 4
 5 6

C(:,:,2) =
 7 8
 9 10
 11 12

>> whos

 Name Size Bytes Class

 A 3x3 72 double array
 C 3x2x2 96 double array
 a 1x1 8 double array
 x 3x1 24 double array

Grand total is 25 elements using 200 bytes

Note that the argument “3” in the cat command indicates that the concatenation is to
occur along the third dimension. If D and E were nmk ×× arrays, the command

>> cat(4,D,E)

would create a array (you can try it). 2××× nmk

MATLAB allows arrays to have complex entries. The complex unit 1−=i is
represented by either of the built-in variables i or j:

>> sqrt(-1)

ans =
 0 + 1.0000i

This example shows how complex numbers are displayed in MATLAB; it also shows
that the square root function is a built-in feature.

The result of the last calculation not assigned to a variable is automatically assigned to
the variable ans, which can then be used as any other variable in subsequent
computations. Here is an example:

>> 100^2-4*2*3 //Press enter

ans =
 9976

>> sqrt(ans) //Press enter

ans =
 99.8799

>> (-100+ans)/4 //Press enter

ans =
 -0.0300

The arithmetic operators work as expected for scalars. A built-in variable that is often
useful is :

>> pi //Press enter

ans =
 3.1416

Some common useful functions, such as sine, cosine, tangent, exponential, and
logarithm are pre-defined. For example:

>> cos(.5)^2+sin(.5)^2 //Press enter

ans =
 1

>> exp(1) //Press enter

ans =
 2.7183

>> log(ans) //Press enter

ans =

 1

If you have any doubts about any command or function an extensive online help system
can be accessed by commands of the form help <command-name>. For example:

>> help ans

 ANS The most recent answer.
 ANS is the variable created automatically when expressions
 are not assigned to anything else. ANSwer.

>> help pi

 PI 3.1415926535897....

 PI = 4*atan(1) = imag(log(-1)) = 3.1415926535897....

A good place to start is with the command help help, which explains how the help
systems works, as well as some related commands. Typing help by itself produces a list
of topics for which help is available; looking at this list we find the entry “elfun--
elementary math functions”. Typing help elfun produces a list of the math functions
available.

Arithmetic operations on matrices.
MATLAB can perform the standard arithmetic operations on matrices, vectors, and
scalars: addition, subtraction, and multiplication. In addition, MATLAB defines a
notion of matrix division as well as “vectorized” operations. All vectorized operations
(these include addition, subtraction, and scalar multiplication, as explained below) can
be applied to n-dimensional arrays for any value of n, but multiplication and division
are restricted to matrices and vectors (n≤2).

Standard operations.

If A and B are arrays, then MATLAB can compute A+B and A-B when these operations
are defined. For example, consider the following commands:

>> A = [1 2 3;4 5 6;7 8 9];
>> B = [1 1 1;2 2 2;3 3 3];
>> C = [1 2;3 4;5 6];

>> whos

 Name Size Bytes Class

 A 3x3 72 double array
 B 3x3 72 double array
 C 3x2 48 double array

Grand total is 24 elements using 192 bytes

>> A+B
ans =
 2 3 4
 6 7 8

 10 11 12

But if you type:

>> A+C

??? Error using ==> + because Matrix dimensions must agree.

Matrix multiplication is also defined:

>> A*C

ans =
 22 28
 49 64
 76 100

>> C*A

??? Error using ==> * because Matrix dimensions must agree.

If A is a square matrix and m is a positive integer, then A^m is the product of m factors of
A.

However, no notion of multiplication is defined for multi-dimensional arrays with more
than 2 dimensions:

>> C = cat(3,[1 2;3 4],[5 6;7 8])

C(:,:,1) =
 1 2
 3 4

C(:,:,2) =
 5 6
 7 8

>> D = [1;2]

D =
 1
 2

>> whos
 Name Size Bytes Class

 C 2x2x2 64 double array
 D 2x1 16 double array

Grand total is 10 elements using 80 bytes

>> C*D
??? Error using ==> *

No functional support for matrix inputs.

By the same token, the exponentiation operator ^ is only defined for square 2-
dimensional arrays (matrices).

Solving matrix equations using “matrix division”.

If A is a square, nonsingular matrix, then the solution of the equation is
. MATLAB implements this operation with the backslash operator:

bAx =
bAx 1−=

>> A = rand(3,3)

A =
 0.2190 0.6793 0.5194
 0.0470 0.9347 0.8310
 0.6789 0.3835 0.0346

>> b = rand(3,1)

b =
 0.0535
 0.5297
 0.6711

>> x = A\b

x =
 -159.3380
 314.8625
 -344.5078

Note: the use of the built-in function rand, which creates a matrix with entries from a
uniform distribution on the interval (0,1). (See help rand for more details.)

This A\b is (mathematically) equivalent to multiplying b on the left by (however,
MATLAB does not compute the inverse matrix; instead it solves the linear system
directly). When used with a non-square matrix, the backslash operator solves the
appropriate system in the least-squares sense; see help slash for details.

1−A

Of course, as with the other arithmetic operators, the matrices must be compatible in
size. The division operator is not defined for n-dimensional arrays with n>2.

“Vectorized” functions and operators.

MATLAB has many commands to create special matrices; the following command
creates a row vector whose components increase arithmetically:

>> t = 1:5
t =
 1 2 3 4 5

The components can change by non-unit steps:

>> x = 0:.1:1

x =
 Columns 1 through 7
 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
 Columns 8 through 11

 0.7000 0.8000 0.9000 1.0000

A negative step is also allowed.

The command linspace has similar results. It creates a vector with linearly spaced
entries. Specifically, linspace(a,b,n) creates a vector of length n with entries

b
n

aba
n

abaa ,...,
1

)(2,
1

,
−
−

+
−
−

+ :

>> linspace(0,1,11)

ans =
 Columns 1 through 7
 0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
 Columns 8 through 11
 0.7000 0.8000 0.9000 1.0000

There is a similar command logspace for creating vectors with logarithmically spaced
entries:

>> logspace(0,1,11)

ans =
 Columns 1 through 7
 1.0000 1.2589 1.5849 1.9953 2.5119 3.1623 3.9811
 Columns 8 through 11
 5.0119 6.3096 7.9433 10.0000

See help logspace for details.

A vector with linearly spaced entries can be regarded as defining a one-dimensional
grid, which is useful for graphing functions. To create a graph of y = f(x) and connect
them with line segments, one can create a grid in the vector x and then create a vector y
with the corresponding function values.

It is easy to create the needed vectors to graph a built-in function, since MATLAB
functions are vectorized. This means that if a built-in function such as sine is applied to
a array, the effect is to create a new array of the same size whose entries are the function
values of the entries of the original array. For example (see Figure 1):

>> x = (0:.1:2*pi);
>> y = sin(x);
>> plot(x,y)

Figure 1: Graph of y = sin(x)

MATLAB also provides vectorized arithmetic operators, which are the same as the

ordinary operators, preceded by “.”. For example, to graph 21 x
xy
+

= :

>> x = (-5:.1:5);
>> y = x./(1+x.^2);
>> plot(x,y)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2: Graph of y = x / (1 + x2)

This x.^2 squares each component of x, and x./z divides each component of x by the
corresponding component of z. Addition and subtraction are performed component-
wise by definition, so there are not “.+” or “.-”operators.

Note the difference between A^2 and A.^2. The first is only defined if A is a square
matrix, while the second is defined for any n-dimensional array A.

Some miscellaneous commands.
An important operator in MATLAB is the single quote “ ' ”, which represents the
(conjugate) transpose:

>> A = [1 2;3 4]

A =
 1 2
 3 4

>> A'

ans =
 1 3
 2 4

>> B = A + i*.5*A

B =
 1.0000 + 0.5000i 2.0000 + 1.0000i

 3.0000 + 1.5000i 4.0000 + 2.0000i

>> B'
ans =
 1.0000 - 0.5000i 3.0000 - 1.5000i
 2.0000 - 1.0000i 4.0000 - 2.0000i

In the rare event that the transpose, rather than the conjugate transpose, is needed, the
“.'” operator is used:

>> B.'

ans =
 1.0000 + 0.5000i 3.0000 + 1.5000i
 2.0000 + 1.0000i 4.0000 + 2.0000i

(note that ' and .' are equivalent for matrices with real entries).

The following commands are frequently useful. More information can be obtained from
the on-line help system.

Creating matrices.

• zeros(m,n) creates an nm× matrix of zeros;
• ones(m,n) creates an matrix of ones; nm×
• eye(n) creates the identity matrix; nn×
• diag(v) (v is an n-vector) creates an nn× diagonal matrix with v on the

diagonal.

For example:

>> ones(3,4)

ans =
 1 1 1 1
 1 1 1 1
 1 1 1 1
>> v=[-1 2 3.5]
v =
 -1.0000 2.0000 3.5000

>> diag (v)
ans =
 -1.0000 0 0
 0 2.0000 0
 0 0 3.5000

The commands zeros and ones can be given any number of integer arguments; with k
arguments, they each create a k-dimensional array of the indicated size.

Formatting display and graphics.

The following commands supply different appearances to the distinct outputs.

• format : Set output format

>> format short, pi
ans =
 3.1416
>> format short e, pi
ans =
 3.1416e+000
>> format long, pi
ans =
 3.14159265358979
>> format long e, pi
ans =
 3.141592653589793e+000

format compact suppresses extra line feeds (all of the output in this paper is in
compact format).

format loose puts the extra line-feeds back in.

>> format loose, pi

ans =
 3.1416

• xlabel('string'), ylabel('string') label the horizontal and vertical axes,
respectively, in the current plot;

• title('string') add a title to the current plot;
• axis([a b c d]) change the window on the current graph to

dycbxa ≤≤≤≤ , ;
• grid adds a rectangular grid to the current plot;
• hold on freezes the current plot so that subsequent graphs will be displayed

with the current;
• hold off releases the current plot; the next plot will erase the current before

displaying;
• subplot puts multiple plots in one graphics window.

For example:

>> xlabel('x-axis');
>> ylabel('y-axis');
>> title('example');

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x-axis

y-
ax

is

example

>> axis([-1 1 -1 1]);

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x-axis

y-
ax

is

example

>> grid on

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x-axis

y-
ax

is
example

The function y= exp (-x^2) will be drawn, with name at the axis and grid.

>> u=x.^2;
>> y= exp(-u);
>> plot (x,y);

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

x-axis

y-
ax

is

example

Now, the subplot function will be used to visualize different functions at the same
time.

>> subplot(2,1,1);
>> fplot('sin(x)',[0 2*pi])
>> subplot(2,1,2);
>> fplot('cos(x)',[0 2*pi])

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

Miscellaneous

• max(x) returns the largest entry of x, if x is a vector; see help max for the result
when x is a k-dimensional array;

• min(x) analogous to max;
• abs(x) returns an array of the same size as x whose entries are the magnitudes

of the entries of x;
• size(A) returns a vector with the number of rows, columns, etc. of the k-

dimensional array A;
k×1

• length(x) returns the ``length'' of the array, i.e. max(size(A)).
• save fname saves the current variables to the file named fname.mat;
• load fname load the variables from the file named fname.mat;
• quit exits MATLAB

For example:

>> x=[3 -4 60 -71 -13 12];

>> max(x)
ans =
 60
>> min(x)
ans =
 -71
>> abs(x)
ans =
 3 4 60 71 13 12

One example: Numerical integration.
Numerical integration is the approximate computation of integral using numerical
techniques. There are a wide range of methods available for numerical integration. In
this example three of them will be used: the rectangle rule, the trapezoidal rule and
Simpson’s rule to approximate the integral:

∫ −
1

0

2/1)1(dxx

1.- Rectangle rule.

A first, very simple, scheme is to approximate the function f(x) on each interval by a
constant, and considering the area of the rectangle of width h = xi+1 - xi and height f(xi)
for the ith interval. It is then a simple matter to compute the sum of the areas of all the
rectangles in the interval.
The interval will be divided into 2, 4, 8, 16, 32, 64 and 128 subintervals.
First an example with 2 subintervals:

Three points in the interval (0,1) are necessary.

>> X=linspace(0,1,3)

X =
 0 0.5000 1.0000

The values of the function x−1 are saved in the variable Y.

>> Y=sqrt(1-X)

Y =
 1.0000 0.7071 0

The first rectangle has height f(0), so the first point of the vector Y is saved.

>> q=Y(1)

q =
 1

The second rectangle has height f(1), so the second point of the vector Y is saved.

>> q=q+Y(2)

q =
 1.7071

The width of the rectangles is 0.5, so the sum of the heights is multiplied by this value
to calculate the area.

>> q=q*1/2

q =
 0.8536

In order to extend the number of subintervals, a loop is necessary to manage the vectors.
129 points are necessary to divide de interval in 128 subintervals.

>> X=linspace(0,1,129);

The values of the function x−1 are saved in the vector Y again.

>> Y=sqrt(1-X);
>> q=Y(1);

In this case, the sum is from f(0) to f(127), that is from the first component Y(1) to the
next to last Y(128).

>> for j=1:127
q=q+Y(j+1);
end
>> q=q*1/128;

Finally, the following program will be used to calculate the integral using 2, 4, 8, 16,
32, 64 and 128 subintervals:

function rectangleRule=rectangleRule(Y)
q=zeros(7,1);
N=2; %Number of subintervals
for i=1:7
 h=1/N;
 q(i)=Y(1);
 for j=1:N-1
 q(i)=q(i)+Y(j*(256/N)+1);
 end
 q(i)=q(i)*h;
 N=N*2;
end
disp('Approximations with the rectangle rule:')

q

The input of this function is a vector of 256 components with the function to integrate
values in the interval [0,1].

>> X=linspace(0,1,257);
>> Y=sqrt(1-X);
>> rectangleRule(Y)

Approximations with the rectangle rule:

q =
 0.85355339059327
 0.76828304624275
 0.72063022162445
 0.69483119687723
 0.68118393627894
 0.67408331137851
 0.67043190729683

2. - Trapezoidal Rule.

In this example, the last program is modified to approximate the integral with the
trapezoidal rule.
The following program will be used:

function trapezoidalRule=trapezoidalRule(Y)
q=zeros(7,1);
N=2; %Number of subintervals
for i=1:7
 h=1/N;
 q(i)=0.5*Y(1);
 q(i)=q(i)+0.5*Y(257);
 for j=1:N-1
 q(i)=q(i)+Y(j*(256/N)+1);
 end
 q(i)=q(i)*h;
 N=N*2;
end
disp('Approximations with the trapezoidal rule:')
q

The input of this function is a vector of 256 components with the function to integrate
values in the interval [0,1].

>> X=linspace(0,1,257);
>> Y=sqrt(1-X);
>> trapezoidalRule(Y)
Approximations with the rectangle rule:

q =

 0.60355339059327
 0.64328304624275
 0.65813022162445
 0.66358119687723
 0.66555893627894
 0.66627081137851
 0.66652565729683

3. – Simpson’s Rule

Finally, Simpson’s Rule will be used. This way, the program is modified as follows:

function simpsonRule=simpsonRule(Y)
q=zeros(7,1);

N=2; %Number of subintervals
for i=1:7
 h=1/N;
 q(i)=Y(1);
 q(i)=q(i)+Y(257);
 k=0;
 for j=1:N-1
 k=k+1;
 q(i)=q(i)+4*Y(k/2*(256/N)+1);
 k=k+1;
 q(i)=q(i)+2*Y(k/2*(256/N)+1);
 end
 k=k+1;
 q(i)=q(i)+4*Y(k/2*(256/N)+1); %Last interval middle point.
 q(i)=q(i)*h/6;
 N=N*2;
end
disp('Approximations with Simpson rule:')
q

The input of this function is a vector of 256 components with the function to integrate
values in the interval [0,1].

>> X=linspace(0,1,257);
>> Y=sqrt(1-X);
>> simpsonRule(Y)
Approximations with Simpson rule:

q =

 0.65652626479257
 0.66307928008502
 0.66539818862815
 0.66621818274618
 0.66650810307836
 0.66661060593627
 0.66664684620310

The results of the three approximations are presented in the following table:

Number of
subintervals

Rectangle Rule Trapezoidal Rule Simpson’s Rule

2
4
8
16
32
64
128

0.85355339059327
0.76828304624275
0.72063022162445
0.69483119687723
0.68118393627894
0.67408331137851
0.67043190729683

0.60355339059327
0.64328304624275
0.65813022162445
0.66358119687723
0.66555893627894
0.66627081137851
0.66652565729683

0.65652626479257
0.66307928008502
0.66539818862815
0.66621818274618
0.66650810307836
0.66661060593627
0.66664684620310

	INTRODUCTION TO MATLAB
	Entering vectors and matrices.
	Arithmetic operations on matrices.
	Standard operations.
	Solving matrix equations using “matrix division”.
	“Vectorized” functions and operators.
	Some miscellaneous commands.
	Creating matrices.
	Formatting display and graphics.
	Miscellaneous

	One example: Numerical integration.

