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MATLAB (MATrix LABoratory) is an interactive software system for numerical 
computations and graphics. As the name suggests, MATLAB is especially designed for 
matrix computations: solving systems of linear equations, factoring matrices, and so 
forth. In addition, it has a variety of graphical capabilities, and can be extended through 
programs written in its own programming language.  

MATLAB is built around the MATLAB language. The simplest way to execute this 
code is to type it in at the prompt,>>, in the Command Window, one of the elements of 
the MATLAB Desktop. Sequences of commands can be saved in a text file, typically 
using the MATLAB Editor, as a script or encapsulated into a function, extending the 
commands available.  

In the following sections, you will have an introduction to some of the most useful 
features of MATLAB. There are plenty of examples. The best way to learn to use 
MATLAB is to read this while running MATLAB, trying the examples and 
experimenting.  

 

Entering vectors and matrices. 
The basic data type in MATLAB is an n-dimensional array of double precision 
numbers. The new data types include structures, classes, and “cell arrays”, which are 
arrays of possibly different data types. 

The following commands show how to enter numbers, vectors and matrices, and assign 
them to variables  
 
>> a = 2  //scalar 
 
If you press enter, you will see: 
 
a = 
     2 
 
>> x = [1;2;3] //Vector 
 
Press enter, 
 
x = 
     1 
     2 
     3 
 
>> A = [1 2 3;4 5 6;7 8 0] //Matrix 
 
Press enter, 



 
A = 
     1     2     3 
     4     5     6 
     7     8     0 
 
Notice that the rows of a matrix are separated by semicolons, while the entries on a row 
are separated by spaces (or commas).  

A useful command is “whos”, which displays the names of all defined variables and 
their types:  

>> whos 
  Name      Size         Bytes  Class 
 
  A         3x3             72  double array 
  a         1x1              8  double array 
  x         3x1             24  double array 
 
Grand total is 13 elements using 104 bytes 
 
Note that each of these three variables is an array; the “shape” of the array determines 
its exact type. The scalar ‘a’ is a 11×  array, the vector ‘x’ is a  array, and the 
matrix ‘A’ is a  array (see the “size” entry for each variable).  

13×
33×

One way to enter a n-dimensional array (n>2) is to concatenate two or more (n-1)-
dimensional arrays using the cat command. For example, the following command 
concatenates two 23×  arrays to create a 223 ××  array:  

>> C = cat(3,[1,2;3,4;5,6],[7,8;9,10;11,12]) 
 
C(:,:,1) = 
     1     2 
     3     4 
     5     6 
 
C(:,:,2) = 
     7     8 
     9    10 
    11    12 
 
>> whos 
 
  Name      Size         Bytes  Class 
 
  A         3x3             72  double array 
  C         3x2x2           96  double array 
  a         1x1              8  double array 
  x         3x1             24  double array 
 
Grand total is 25 elements using 200 bytes 
 
Note that the argument “3” in the cat command indicates that the concatenation is to 
occur along the third dimension. If D and E were nmk ××   arrays, the command  
 
>> cat(4,D,E) 
 



would create a  array (you can try it). 2××× nmk
 
MATLAB allows arrays to have complex entries. The complex unit 1−=i is 
represented by either of the built-in variables i or j:  
 
>> sqrt(-1) 
 
ans = 
        0 + 1.0000i 
 
This example shows how complex numbers are displayed in MATLAB; it also shows 
that the square root function is a built-in feature.  

The result of the last calculation not assigned to a variable is automatically assigned to 
the variable ans, which can then be used as any other variable in subsequent 
computations. Here is an example:  

>> 100^2-4*2*3 //Press enter 
 
ans = 
        9976 
 
>> sqrt(ans) //Press enter 
 
ans = 
   99.8799 
 
>> (-100+ans)/4 //Press enter 
 
ans = 
    -0.0300 
 
The arithmetic operators work as expected for scalars. A built-in variable that is often 
useful is :  
 
>> pi  //Press enter 
 
ans = 
    3.1416 
 

Some common useful functions, such as sine, cosine, tangent, exponential, and 
logarithm are pre-defined. For example:  

>> cos(.5)^2+sin(.5)^2 //Press enter 
 
ans = 
     1 
 
>> exp(1)  //Press enter 
 
ans = 
    2.7183 
 
>> log(ans)  //Press enter 
 
ans = 



     1 

If you have any doubts about any command or function an extensive online help system 
can be accessed by commands of the form help <command-name>. For example:  

>> help ans 
 
 ANS    The most recent answer. 
        ANS is the variable created automatically when expressions 
        are not assigned to anything else. ANSwer. 
 
>> help pi  
 
 PI     3.1415926535897.... 
 
 PI = 4*atan(1) = imag(log(-1)) = 3.1415926535897.... 

A good place to start is with the command help help, which explains how the help 
systems works, as well as some related commands. Typing help by itself produces a list 
of topics for which help is available; looking at this list we find the entry “elfun--
elementary math functions”. Typing help elfun produces a list of the math functions 
available.  

Arithmetic operations on matrices. 
MATLAB can perform the standard arithmetic operations on matrices, vectors, and 
scalars: addition, subtraction, and multiplication. In addition, MATLAB defines a 
notion of matrix division as well as “vectorized” operations. All vectorized operations 
(these include addition, subtraction, and scalar multiplication, as explained below) can 
be applied to n-dimensional arrays for any value of n, but multiplication and division 
are restricted to matrices and vectors (n≤2).  

Standard operations. 

If A and B are arrays, then MATLAB can compute A+B and A-B when these operations 
are defined. For example, consider the following commands:  

>> A = [1 2 3;4 5 6;7 8 9];  
>> B = [1 1 1;2 2 2;3 3 3]; 
>> C = [1 2;3 4;5 6]; 
 
>> whos 
 
  Name      Size         Bytes  Class 
 
  A         3x3             72  double array 
  B         3x3             72  double array 
  C         3x2             48  double array 
 
Grand total is 24 elements using 192 bytes 
 
>> A+B 
ans = 
     2     3     4 
     6     7     8 



    10    11    12 
 
But if you type: 
 
>> A+C 
 
??? Error using ==> + because Matrix dimensions must agree. 
 
Matrix multiplication is also defined:  
 
>> A*C 
 
ans = 
    22    28 
    49    64 
    76   100 
 
>> C*A 
 
??? Error using ==> * because Matrix dimensions must agree. 
 
If A is a square matrix and m is a positive integer, then A^m is the product of m factors of 
A.  

However, no notion of multiplication is defined for multi-dimensional arrays with more 
than 2 dimensions:  

>> C = cat(3,[1 2;3 4],[5 6;7 8]) 
 
C(:,:,1) = 
     1     2 
     3     4 
 
C(:,:,2) = 
     5     6 
     7     8 
 
>> D = [1;2] 
 
D = 
     1 
     2 
 
>> whos 
  Name      Size         Bytes  Class 
 
  C         2x2x2           64  double array 
  D         2x1             16  double array 
 
Grand total is 10 elements using 80 bytes 
 
>> C*D 
??? Error using ==> * 
 
No functional support for matrix inputs. 

By the same token, the exponentiation operator ^ is only defined for square 2-
dimensional arrays (matrices). 



Solving matrix equations using “matrix division”. 

If A is a square, nonsingular matrix, then the solution of the equation  is 
. MATLAB implements this operation with the backslash operator:  

bAx =
bAx 1−=

>> A = rand(3,3) 
 
A = 
    0.2190    0.6793    0.5194 
    0.0470    0.9347    0.8310 
    0.6789    0.3835    0.0346 
 
>> b = rand(3,1) 
 
b = 
    0.0535 
    0.5297 
    0.6711 
 
>> x = A\b 
 
x = 
 -159.3380 
  314.8625 
 -344.5078 
 

Note: the use of the built-in function rand, which creates a matrix with entries from a 
uniform distribution on the interval (0,1). (See help rand for more details.)  

This A\b is (mathematically) equivalent to multiplying b on the left by  (however, 
MATLAB does not compute the inverse matrix; instead it solves the linear system 
directly). When used with a non-square matrix, the backslash operator solves the 
appropriate system in the least-squares sense; see help slash for details. 

1−A

Of course, as with the other arithmetic operators, the matrices must be compatible in 
size. The division operator is not defined for n-dimensional arrays with n>2. 

“Vectorized” functions and operators. 

MATLAB has many commands to create special matrices; the following command 
creates a row vector whose components increase arithmetically:  

>> t = 1:5 
t = 
     1     2     3     4     5 
 
The components can change by non-unit steps: 
  
>> x = 0:.1:1 
 
x = 
  Columns 1 through 7  
         0    0.1000    0.2000    0.3000    0.4000    0.5000    0.6000 
  Columns 8 through 11  



    0.7000    0.8000    0.9000    1.0000 
 
A negative step is also allowed. 
 
The command linspace has similar results. It creates a vector with linearly spaced 
entries. Specifically, linspace(a,b,n) creates a vector of length n with entries 
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>> linspace(0,1,11) 
 
ans = 
  Columns 1 through 7  
         0    0.1000    0.2000    0.3000    0.4000    0.5000    0.6000 
  Columns 8 through 11  
    0.7000    0.8000    0.9000    1.0000 
 
There is a similar command logspace for creating vectors with logarithmically spaced 
entries:  
 
>> logspace(0,1,11) 
 
ans = 
  Columns 1 through 7  
    1.0000    1.2589    1.5849    1.9953    2.5119    3.1623    3.9811 
  Columns 8 through 11  
    5.0119    6.3096    7.9433   10.0000 
 
See help logspace for details.  

A vector with linearly spaced entries can be regarded as defining a one-dimensional 
grid, which is useful for graphing functions. To create a graph of y = f(x) and connect 
them with line segments, one can create a grid in the vector x and then create a vector y 
with the corresponding function values.  

It is easy to create the needed vectors to graph a built-in function, since MATLAB 
functions are vectorized. This means that if a built-in function such as sine is applied to 
a array, the effect is to create a new array of the same size whose entries are the function 
values of the entries of the original array. For example (see Figure 1):  

>> x = (0:.1:2*pi); 
>> y = sin(x); 
>> plot(x,y) 



 
Figure 1: Graph of y = sin(x) 

MATLAB also provides vectorized arithmetic operators, which are the same as the 

ordinary operators, preceded by “.”. For example, to graph 21 x
xy
+

= : 

>> x = (-5:.1:5);  
>> y = x./(1+x.^2); 
>> plot(x,y) 
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Figure 2: Graph of y = x / (1 + x2) 

This x.^2 squares each component of x, and x./z divides each component of x by the 
corresponding component of z. Addition and subtraction are performed component-
wise by definition, so there are not “.+” or “.-”operators. 

Note the difference between A^2 and A.^2. The first is only defined if A is a square 
matrix, while the second is defined for any n-dimensional array A. 

Some miscellaneous commands. 
An important operator in MATLAB is the single quote “ ' ”, which represents the 
(conjugate) transpose:  

>> A = [1 2;3 4]  
 
A = 
     1     2 
     3     4 
 
>> A' 
 
ans = 
     1     3 
     2     4 
 
>> B = A + i*.5*A 
 
B = 
   1.0000 + 0.5000i   2.0000 + 1.0000i 



   3.0000 + 1.5000i   4.0000 + 2.0000i 
 
>> B' 
ans = 
   1.0000 - 0.5000i   3.0000 - 1.5000i 
   2.0000 - 1.0000i   4.0000 - 2.0000i 
 
In the rare event that the transpose, rather than the conjugate transpose, is needed, the 
“.'” operator is used:  
 
>> B.' 
 
ans = 
   1.0000 + 0.5000i   3.0000 + 1.5000i 
   2.0000 + 1.0000i   4.0000 + 2.0000i 
 
(note that ' and .' are equivalent for matrices with real entries). 

The following commands are frequently useful. More information can be obtained from 
the on-line help system. 

Creating matrices. 

• zeros(m,n) creates an nm×  matrix of zeros; 
• ones(m,n) creates an  matrix of ones; nm×
• eye(n) creates the  identity matrix; nn×
• diag(v) ( v is an n-vector) creates an nn× diagonal matrix with v on the 

diagonal.  

For example: 

>> ones(3,4) 

ans = 
     1     1     1     1 
     1     1     1     1 
     1     1     1     1 
>> v=[-1 2 3.5] 
v = 
   -1.0000    2.0000    3.5000 
 
>> diag (v) 
ans = 
   -1.0000         0         0 
         0    2.0000         0 
         0         0    3.5000 
 
The commands zeros and ones can be given any number of integer arguments; with k 
arguments, they each create a k-dimensional array of the indicated size.  
 

Formatting display and graphics. 

The following commands supply different appearances to the distinct outputs.  



• format : Set output format 

>> format short, pi 
ans = 
    3.1416 
>> format short e, pi 
ans = 
      3.1416e+000 
>> format long, pi 
ans = 
      3.14159265358979 
>> format long e, pi 
ans = 
    3.141592653589793e+000 

format compact suppresses extra line feeds (all of the output in this paper is in 
compact format).  

format loose   puts the extra line-feeds back in. 

>> format loose, pi 

 

ans = 
    3.1416 

• xlabel('string'), ylabel('string') label the horizontal and vertical axes, 
respectively, in the current plot; 

• title('string') add a title to the current plot; 
• axis([a b c d]) change the window on the current graph to 

dycbxa ≤≤≤≤ , ; 
• grid adds a rectangular grid to the current plot; 
• hold on freezes the current plot so that subsequent graphs will be displayed 

with the current; 
• hold off releases the current plot; the next plot will erase the current before 

displaying; 
• subplot puts multiple plots in one graphics window. 

For example: 

>> xlabel('x-axis'); 
>> ylabel('y-axis'); 
>> title('example'); 
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>> axis([-1 1 -1 1]); 
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>> grid on 
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The function y= exp (-x^2) will be drawn, with name at the axis and grid. 

>> u=x.^2; 
>> y= exp(-u); 
>> plot (x,y); 
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Now, the subplot function will be used to visualize different functions at the same 
time. 

>> subplot(2,1,1); 
>> fplot('sin(x)',[0 2*pi]) 
>> subplot(2,1,2); 
>> fplot('cos(x)',[0 2*pi]) 

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

 

 

Miscellaneous  

• max(x) returns the largest entry of x, if x is a vector; see help max for the result 
when x is a k-dimensional array; 

• min(x) analogous to max; 
• abs(x) returns an array of the same size as x whose entries are the magnitudes 

of the entries of x; 
• size(A) returns a vector with the number of rows, columns, etc. of the k-

dimensional array A; 
k×1

• length(x) returns the ``length'' of the array, i.e. max(size(A)). 
• save fname saves the current variables to the file named fname.mat; 
• load fname load the variables from the file named fname.mat; 
• quit exits MATLAB  

For example: 

>> x=[ 3 -4 60 -71 -13 12]; 



>> max(x) 
ans = 
    60 
>> min(x) 
ans = 
   -71 
>> abs(x) 
ans = 
     3     4    60    71    13    12 

 

One example: Numerical integration. 
Numerical integration is the approximate computation of integral using numerical 
techniques. There are a wide range of methods available for numerical integration. In 
this example three of them will be used: the rectangle rule, the trapezoidal rule and 
Simpson’s rule to approximate the integral: 

∫ −
1

0

2/1)1( dxx  

 
1.- Rectangle rule. 
 
A first, very simple, scheme is to approximate the function f(x) on each interval by a 
constant, and considering the area of the rectangle of width h = xi+1 - xi and height f(xi) 
for the ith interval. It is then a simple matter to compute the sum of the areas of all the 
rectangles in the interval. 
The interval will be divided into 2, 4, 8, 16, 32, 64 and 128 subintervals. 
First an example with 2 subintervals: 
 
Three points in the interval (0,1) are necessary. 
 
>> X=linspace(0,1,3) 
 
X = 
         0    0.5000    1.0000 
 
The values of the function x−1 are saved in the variable Y. 
 
>> Y=sqrt(1-X) 
 
Y = 
    1.0000    0.7071         0 
 
The first rectangle has height f(0), so the first point of the vector Y is saved.  
 
>> q=Y(1) 
 
q = 
     1 
 
The second rectangle has height f(1), so the second point of the vector Y is saved.  



 
>> q=q+Y(2) 
 
q = 
    1.7071 
 
The width of the rectangles is 0.5, so the sum of the heights is multiplied by this value 
to calculate the area. 
 
>> q=q*1/2 
 
q = 
    0.8536 
 
In order to extend the number of subintervals, a loop is necessary to manage the vectors. 
129 points are necessary to divide de interval in 128 subintervals. 
 
>> X=linspace(0,1,129); 
 
The values of the function x−1 are saved in the vector Y again. 
 
>> Y=sqrt(1-X); 
>> q=Y(1); 
 
In this case, the sum is from f(0) to f(127), that is from the first component Y(1) to the 
next to last Y(128). 
 
>> for j=1:127 
q=q+Y(j+1); 
end 
>> q=q*1/128; 
 
Finally, the following program will be used to calculate the integral using 2, 4, 8, 16, 
32, 64 and 128 subintervals: 
 
function rectangleRule=rectangleRule(Y) 
q=zeros(7,1); 
N=2; %Number of subintervals 
for i=1:7 
    h=1/N; 
    q(i)=Y(1); 
    for j=1:N-1 
        q(i)=q(i)+Y(j*(256/N)+1); 
    end 
    q(i)=q(i)*h; 
    N=N*2; 
end 
disp('Approximations with the rectangle rule:') 

q 
 
The input of this function is a vector of 256 components with the function to integrate 
values in the interval [0,1]. 
 
>> X=linspace(0,1,257); 
>> Y=sqrt(1-X); 
>> rectangleRule(Y) 



Approximations with the rectangle rule: 
 
q = 
   0.85355339059327 
   0.76828304624275 
   0.72063022162445 
   0.69483119687723 
   0.68118393627894 
   0.67408331137851 
   0.67043190729683  
 
2. - Trapezoidal Rule. 
 
In this example, the last program is modified to approximate the integral with the 
trapezoidal rule. 
The following program will be used: 
 
function trapezoidalRule=trapezoidalRule(Y) 
q=zeros(7,1); 
N=2; %Number of subintervals 
for i=1:7 
   h=1/N; 
   q(i)=0.5*Y(1); 
   q(i)=q(i)+0.5*Y(257); 
   for j=1:N-1 
      q(i)=q(i)+Y(j*(256/N)+1); 
   end 
   q(i)=q(i)*h; 
   N=N*2; 
end 
disp('Approximations with the trapezoidal rule:') 
q 
 
The input of this function is a vector of 256 components with the function to integrate 
values in the interval [0,1]. 
 
 
>> X=linspace(0,1,257); 
>> Y=sqrt(1-X); 
>> trapezoidalRule(Y) 
Approximations with the rectangle rule: 
 
q = 
 
   0.60355339059327 
   0.64328304624275 
   0.65813022162445 
   0.66358119687723 
   0.66555893627894 
   0.66627081137851 
   0.66652565729683 
 
3. – Simpson’s Rule 
 
Finally,  Simpson’s Rule will be used. This way, the program is modified as follows: 
 
function simpsonRule=simpsonRule(Y) 
q=zeros(7,1); 



N=2; %Number of subintervals 
for i=1:7 
   h=1/N; 
   q(i)=Y(1); 
   q(i)=q(i)+Y(257); 
   k=0; 
      for j=1:N-1 
         k=k+1; 
         q(i)=q(i)+4*Y(k/2*(256/N)+1); 
         k=k+1; 
         q(i)=q(i)+2*Y(k/2*(256/N)+1);    
      end 
      k=k+1; 
      q(i)=q(i)+4*Y(k/2*(256/N)+1); %Last interval middle point. 
      q(i)=q(i)*h/6;        
      N=N*2;    
end 
disp('Approximations with Simpson rule:') 
q 
 
The input of this function is a vector of 256 components with the function to integrate 
values in the interval [0,1]. 
 
>> X=linspace(0,1,257); 
>> Y=sqrt(1-X); 
>> simpsonRule(Y) 
Approximations with Simpson rule: 
 
q = 
 
   0.65652626479257 
   0.66307928008502 
   0.66539818862815 
   0.66621818274618 
   0.66650810307836 
   0.66661060593627 
   0.66664684620310 
 
The results of the three approximations are presented in the following table: 
 

Number of 
subintervals 

Rectangle Rule Trapezoidal Rule Simpson’s Rule 

2 
4 
8 
16 
32 
64 
128 

0.85355339059327 
0.76828304624275 
0.72063022162445 
0.69483119687723 
0.68118393627894 
0.67408331137851 
0.67043190729683 

0.60355339059327 
0.64328304624275 
0.65813022162445 
0.66358119687723 
0.66555893627894 
0.66627081137851 
0.66652565729683 

0.65652626479257 
0.66307928008502 
0.66539818862815 
0.66621818274618 
0.66650810307836 
0.66661060593627 
0.66664684620310 
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