
Numerical Methods for ODEs:
Some One Step Methods

Introduction:
In this document we will show how to use Mathematica to study the different one step numerical methods for

the solution of Ordinary Differential Equations (ODEs). Specifically we will show how to obtain an approximate
solution to an Initial Value Problem (IVP) of the form y ' = f Ht, yL, yHt0L = y0, obtaining values of the solution by

using equally spaced points over the interval @t0, tN D, i.e. tn = t0 + n h, to n = 0, ..., N . The distance h =
tN -t0

N
is called

the step lenght. yn will be the approximate value of yHtnL and we will write fn = f Htn, ynL.

1. Using NDSolve.
It is well known that ODEs cannot always be integrated exactly. If Mathematica cannot solve an ODE

exactly, the DSolve command Output is the same as that obtained using the Input instruction:

ecu = DSolveAy'@tD � 1 + y@tD2
- t3, y@tD, tE

DSolveAy¢@tD � 1 - t3 + y@tD2, y@tD, tE

When this happens, the ODE can be solved approximately, whenever the problem to solve has just one
solution, i.e. it is an IVP. The appropriate instruction to give an approximate solution to an ODE is NDSolve using

the syntax:

NDSolve@8equation, initials conditions<, function, 8variable , interval<D

In general, NDSolve[{equation,initials conditions},x[t],{t,a,b}] gives an approxi-

mation of the solution x(t) for the IVP in the interval @a, bD. For example, if a solution for the IVP

y ' = 1 + y2
- t3, yH0L = 0 in the interval @0, 4D, is required, the appropriate instruction is:

solution = NDSolveA9y'@tD � 1 + y@tD2
- t3, y@0D � 0=, y@tD, 8t, 0, 4<E

88y@tD ® InterpolatingFunction@880., 4.<<, <>D@tD<<

As it can be seen, the Output of the NDSolve command is an assignment to a function defined in terms of

an interpolating function. Therefore, the expression must be coverted to a value table in order to plot the approxi-
mate solution obtained. The following method is used:

yapprox@t_D = y@tD �. solution@@1DD

InterpolatingFunction@880., 4.<<, <>D@tD

Now the function value at any point of the interval considered can be calculated:

yapprox@1D

1.16197

A table of equispaced value in the interval @0, 1D can also be calculated using the step h = 0.1:

Table@8t, yapprox@tD<, 8t, 0, 1, 0.1<D �� TableForm �� Chop

0 0

0.1 0.10031

0.2 0.202305

0.3 0.307248

0.4 0.416024

0.5 0.529206

0.6 0.647092

0.7 0.769722

0.8 0.896859

0.9 1.02794

1. 1.16197

or the solution can be represented graphically using the Plot command. For example, its graphical representation can be

calculated in the interval @0, 2D:

Plot@yapprox@tD, 8t, 0, 2<D

0.5 1 1.5 2

0.25

0.5

0.75

1

1.25

1.5

1.75

REMARKS:
1.- The solution obtained is only defined in the interval considered. If the solution has to be evaluated at a point
outside the defined interval, Mathematica informs the user that extrapolation techniques are being implemented:

yapprox@6D

InterpolatingFunction::dmval :

Input value 86< lies outside the range of data in the interpolating

function. Extrapolation will be used. More¼

-14.5568

2.- If the program Help is consulted, the different options i.e. the numerical method used for the approximation, etc.
that the NDSolve function has at its command are specified. These include Adams, Runge-Kutta, Euler, etc.

Example 1.

Obtain the approximate values of the solution of the IVP , y'=y(1-sin t), y(0)=1, in the interval [0,1], with equis-
paced point at distance 0.05 apart.

Solution

The command NDSolve is used directly to solve it.

sol11 = NDSolve@8y'@tD � y@tD H1 - Sin@tDL, y@0D � 1<, y@tD, 8t, 0, 1<D

88y@tD ® InterpolatingFunction@880., 1.<<, <>D@tD<<

The solution function is defined and the required value table is calculated:

2 NumericOneStepSG.nb

yap11@t_D = y@tD �. sol11@@1DD

InterpolatingFunction@880., 1.<<, <>D@tD

Table@8t, yap11@tD<, 8t, 0, 1, 0.05<D �� TableForm

0 1.

0.05 1.04996

0.1 1.09966

0.15 1.14886

0.2 1.1973

0.25 1.24472

0.3 1.2909

0.35 1.33559

0.4 1.37859

0.45 1.4197

0.5 1.45875

0.55 1.4956

0.6 1.5301

0.65 1.56218

0.7 1.59176

0.75 1.61881

0.8 1.6433

0.85 1.66526

0.9 1.68474

0.95 1.70179

1. 1.71653

2. Euler's Method.
Euler's method is the easiest simple step method. With the usual notation, the Euler's algorithm to approximate

the solution of the IVP y ' = f Ht, yL with yHt0L = y0 at the interval [t0 = a, b], is the expression:

 yn+1 = yn + h f Htn, ynL = yn + h fn n = 0, ..., m - 1

where h =
b - a

m
is the step length and tn = tn-1 + h = a + n h.

In accordance with the general theory of Numerical Methods, the characteristic equation is p(x) = x - 1 so it is
easy to show that it this is a convergent numerical method, because it is stable and consistent. The last expression can be
coded with Mathematica as follows:

euler @f_, h_, ini_, a_, b_D := Module @ 8y, t, ytable, c<, c = Hb - aL �h;
y@0D = ini; t@n_D := a + n h; y@n_D := y@nD = y@n - 1D + h f@t@n - 1D, y@n - 1DD;
ytable = Table@y@iD, 8i, 0, c<D;
Table@8t@iD, ytable@@i + 1DD<, 8i, 0, c<D �� TableFormD

where f is the function associated with the ODE, h is the step length, ini is the value of the initial condition,and a and b
are the boundary points. The Output provides the table of values of the approximate solution to the ODE.

Next, the previous procedure trial is done to solve the IVP y ' = -t y +
4 t
y

, y(0)=1 approximately at the

interval [0,1], with step length 0.1. The corresponding function is defined:

NumericOneStepSG.nb 3

f@t_, y_D = -t y +
4 t

y
;

and the previous algorithm is applied knowing that, in this case and according with the conditions of the wording,

h = 0.1, ini = 1, a = 0, b = 1.

euler@f, 0.1, 1, 0, 1D

0 1

0.1 1

0.2 1.03

0.3 1.08707

0.4 1.16485

0.5 1.25561

0.6 1.35211

0.7 1.44849

0.8 1.5404

0.9 1.6249

1. 1.70021

In order to evaluate the accuracy of the approximation, the exact solution of the IVP is calculated and its values

compared with the solution obtained using Euler's method. The command DSolve is applied

exactsol = DSolveB:y'@tD � -t y@tD +
4 t

y@tD
, y@0D � 1>, y@tD, tF

::y@tD ® ã
-
t2

2 -3 + 4 ã
t2 >>

The solution function obtained is defined and its corresponding value table is calculated

yex@t_D = exactsol@@1, 1, 2DD

ã
-
t2

2 -3 + 4 ã
t2

Table@8t, yex@tD<, 8t, 0, 1, 0.1<D �� TableForm

0 1

0.1 1.01482

0.2 1.05718

0.3 1.1217

0.4 1.20149

0.5 1.28981

0.6 1.38093

0.7 1.47042

0.8 1.55503

0.9 1.63261

1. 1.70187

The comparison can be shown graphically. A procedure of Mathematica is programmed to present the graphical

representation, in red color, of the solution obtained with Euler's method. This new procedure grafeuler has the same
input as the procedure programmed before with the same meaning for the parameters used

4 NumericOneStepSG.nb

grafeuler@f_, h_, ini_, a_, b_D :=

ModuleB8y, t, ytable, c<, c =
b - a

h
; y@0D = ini; t@n_D := a + n h;

y@n_D := y@nD = y@n - 1D + h f@t@n - 1D, y@n - 1DD; ytable = Table@y@iD, 8i, 0, c<D;
ListPlot@Table@8t@iD, ytablePi + 1T<, 8i, 0, c<D, Joined ® True,

PlotStyle ® 8RGBColor@1, 0, 0D<, PlotRange ® AllDF

The approximate solution and the exact solution are represented together to allow the graphical comparison

grafeuler@f, 0.1, 1, 0, 1D

0.2 0.4 0.6 0.8 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

aproxi = %;

exact = Plot@yex@tD, 8t, 0, 1<D

0.2 0.4 0.6 0.8 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Show@aproxi, exactD

0.2 0.4 0.6 0.8 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Example 2.

Using Euler's method, produce an approximate solution to the IVP y' = 3 (y + t), y(0) = 1, on the interval [0,1],
with equispaced points at the distance 0.1 apart. Represent graphically the obtained solution with the exact solution

calculated using the command DSolve. Comment on the bad behaviour of the approximation and obtain an improved
approximation by reducing the step length.

NumericOneStepSG.nb 5

Using Euler's method, produce an approximate solution to the IVP y' = 3 (y + t), y(0) = 1, on the interval [0,1],
with equispaced points at the distance 0.1 apart. Represent graphically the obtained solution with the exact solution

calculated using the command DSolve. Comment on the bad behaviour of the approximation and obtain an improved
approximation by reducing the step length.

Solution

The rough solution and the exact solution are calculated using DSolve:

f@t_, y_D := 3 Hy + tL

euler@f, 0.1, 1, 0, 1D

0 1

0.1 1.3

0.2 1.72

0.3 2.296

0.4 3.0748

0.5 4.11724

0.6 5.50241

0.7 7.33314

0.8 9.74308

0.9 12.906

1. 17.0478

solexacta22 = DSolve@8y'@tD � 3 Hy@tD + tL, y@0D � 1<, y@tD, tD

::y@tD ®
1

3
I-1 + 4 ã

3 t
- 3 tM>>

The obtained solution function is defined

yex22@t_D = solexacta22@@1, 1, 2DD

1

3
I-1 + 4 ã

3 t
- 3 tM

The graphical representation of both solutions is calculated as before

grafeuler@f, 0.1, 1, 0, 1D

0.2 0.4 0.6 0.8 1

2.5

7.5

10

12.5

15

aproximada22 = %;

6 NumericOneStepSG.nb

exacta22 = Plot@yex22@tD, 8t, 0, 1<D

0.2 0.4 0.6 0.8 1

5

10

15

20

25

Show@aproximada22, exacta22D

0.2 0.4 0.6 0.8 1

5

10

15

20

25

As you can see from the graphs, the approximation obtained by the Euler method is not good. This is because the
exact solution rises very rapidly due to the exponential term. A better approximation can be obtained using a smaller step
length

grafeuler@f, 0.01, 1, 0, 1D

0.2 0.4 0.6 0.8 1

5

10

15

20

aproximada22bis = %;

NumericOneStepSG.nb 7

Show@aproximada22bis, exacta22D

0.2 0.4 0.6 0.8 1

5

10

15

20

25

8 NumericOneStepSG.nb

