1.7. Elements of calculus: derivatives, integrals, limits, sums, equations

Function Action   
 
D[f, x]   or    FormBox[StyleBox[StyleBox[StyleBox[Cell[TextData[Cell[BoxData[∂  f]]], TableText, TextAl ... sterGrid], TraditionalForm]                                                                      x    Symbolic calculation of the partial derivative of f with respect to x
D[f, x, y ... ]    or  FormBox[StyleBox[StyleBox[StyleBox[Cell[TextData[Cell[BoxData[∂      f]]], TableText, Te ... Grid], TraditionalForm]                                                                      x, y    Sumbolic calculation of the multiple derivative of f with respect to x, then to y etc.
D[f,{x, n }]    or   FormBox[StyleBox[StyleBox[StyleBox[Cell[TextData[Cell[BoxData[∂      f]]], TableText, Te ... Grid], TraditionalForm]                                                                      x, x n -th derivative of f with respect to x (here n=2)
Dt[ f ] Symbolic calculation of the total derivative of f
Dt[ f, x ] Symbolic calculation of the total derivative of f on the total derivative of x
D[ f [x] ,x]    Symbolic calculation of the partial derivative of f[x], defined as a function of x  
 
Integrate[f, x] or FormBox[StyleBox[StyleBox[StyleBox[Cell[TextData[Cell[BoxData[∫ f d x]]], TableText, Tex ... ments -> Top, ColumnAlignments -> {Left}, ColumnLines -> 0.5}], TableMasterGrid], TraditionalForm]Symbolic calculation of the indefinite integral   
Integrate[f,{x, a, b}]                                                                      b FormBox[StyleBox[StyleB ... sterGrid], TraditionalForm]                                                                      aSymbolic calculation of the indefinite integral    
Integrate[f,{x, a, b}]  //NCalculates the numerical value of the given definite integral
N [Integrate[f,{x, a, b}]  , n] Calculates the numerical value of the given definite integral with an accuracy of n digits
Integrate[f,{x, a, b},{y, c, d }]Symbolic calculation of the double definite integral, where c and d can be functions of a, b. By analogy for the multiple integrals.
 
Limit[f, x->x0]Calculates the limit of  f  as x approaches x0
Limit[f, x->Infinity]  or  Limit[f, x->∞] Calculates the limit of  f  as x approaches
Sum[ f, {i, imin, imax }] or                                                                  imax FormBox[StyleBox[StyleBox ... sterGrid], TraditionalForm]                                                               i = iminCalculates the sum of  f  where the index i variates from imin to imax
Sum[ f, {i, imin, imax , di}]As the previous function but the index i is incremented by a step di
Sum[f,{i, imin, imax},{j,jmin,jmax }]Multiple summation
Product[ f, {i, imin, imax }] or                                                                  imax FormBox[StyleBox[StyleBox[ ... MasterGrid], TraditionalForm]                                                                i = 1 Calculates the product                                                                 imax FormBox[StyleBox[StyleBox ... sterGrid], TraditionalForm]                                                               i = imin
Product[ f, {i, imin, imax , di}]As the previous function but the index i is incremented by a step di
Product[f,{i,imin, imax},{j,jmin,jmax]Calculates the multiple product
 
Series[expression, {x, x0, n}]Symbolic power series expansion for f about the point FormBox[StyleBox[StyleBox[StyleBox[Cell[TextData[Cell[BoxData[x ], InlineFormula]], TableText, ... ableMasterGrid], TraditionalForm]                                                                0 up to the n-th degree                                                                       n FormBox[StyleBox[Style ... asterGrid], TraditionalForm]                                                                     0with the order of the truncation error
Normal[ Series[expr, {x, x0, n}] As the previous function without the truncation error.
 
Solve [f==0, x]Attempts to solve algebraically equation  f = 0 for x. The result is a list of roots, named x
Solve [left_hand_side==right_hand_side, x]  As the previous function for more common case of equation
x1=x /. %[[1]]Extracts the first root of equation in the variable x1  
x2=x /. %%[[2]]Extracts the second root of equation in the variable x2
N[Solve [f==0, x] , n]Numerical calculation of the roots of equation with accuracy of n digits
Solve [ {f==0, g==0}, {x, y}]Attempts to solve exactly the system of simultaneous equations f==0, g==0 for unknowns quantities x,y. The result is a list of numbers and/or expressions for roots.
Eliminate [{left1==right1, left2==right2, ...},{x, y, ...}]If possible the elimination of the variables x, y, ... from the system of equations is performed and a possible solution is given.
Reduce[{left1==right1, left2==right2, ...},{x, y, ...}]Analogously as Eliminate function, but with the logical relations.