Difference equations – examples

Example 6. There is given the sequence 1, 1, 2, 3, 5, 8, 13, 21,

Determine its 100th member (Fibonacci sequence)

SOLUTION

Example 6. The general member of the sequence has the form: $u_{n+2} = u_{n+1} + u_n$. We write the characteristic equation $\rho(z) = z^2 - z - 1 = 0$ and find its roots: $z_{1,2} = \frac{1 \pm \sqrt{5}}{2}$. Thus the general solution is obtained from the formula:

$$u_n = C_1 \left(\frac{1-\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1+\sqrt{5}}{2}\right)^n$$

By substitution with the initial conditions we calculate $C_1 = \frac{1-\sqrt{5}}{2\sqrt{5}}$, $C_2 = \frac{1+\sqrt{5}}{2\sqrt{5}}$.

The solution of the problem is: $u_{100} = \frac{1 - \sqrt{5}}{2\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^{100} + \frac{1 + \sqrt{5}}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^{100}$.

Note: By using the system *Mathematica* the exact value of the number in question is found in this way:

```
(* Example 6 Fibonacci numbers - difference equations*)

z =.

Solve [z^2 - z - 1 = 0, z] (*Solving the characteristic equation*)

t = z /. % (* Memorizing the roots in a list*)

z1 = t[[1]] (* Extraction of different roots*)

z2 = t[[2]]

{\{z \rightarrow \frac{1}{2}(1 - \sqrt{5})\}, \{z \rightarrow \frac{1}{2}(1 + \sqrt{5})\}}

\{\frac{1}{2}(1 - \sqrt{5}), \frac{1}{2}(1 + \sqrt{5})\}

\frac{1}{2}(1 - \sqrt{5})

\frac{1}{2}(1 - \sqrt{5})

\{z \rightarrow \frac{1}{2}(1 - \sqrt{5})\}, \{z \rightarrow \frac{1}{2}(1 + \sqrt{5})\}\}
```

<pre>c1=.; c2=.; (* Solving the system about c1, c2*) Solve[{c1+c2 == 1,</pre>
$\left\{\left\{c1 \rightarrow -\frac{1}{10} \left(-5 + \sqrt{5}\right), \ c2 \rightarrow \frac{1 + \sqrt{5}}{2\sqrt{5}}\right\}\right\}$
$c1 = -\frac{1}{10} \left(-5 + \sqrt{5}\right); \ c2 = \frac{1 + \sqrt{5}}{2\sqrt{5}};$
u100 = c1 * z1 ¹⁰⁰ + c2 * z2 ¹⁰⁰ Simplify[%] % // N
$\frac{\left(1-\sqrt{5}\right)^{100}\left(5-\sqrt{5}\right)}{12676506002282294014967032053760}+\frac{\left(1+\sqrt{5}\right)^{101}}{2535301200456458802993406410752\sqrt{5}}$
573 147 844 013 817 084 101
5.73148×10^{20}

Author: Snezhana Gocheva-Ilieva Plovdiv University <u>snow@uni-plovdiv.bg</u>