Difference equations - examples

Example 4. Find the solution of the difference equation.
a) $u_{n+1}=\frac{1}{2} u_{n}+1, \quad u_{0}=1$
b) $u_{n+2}-3 u_{n+1}+2 u_{n}=-1, \quad u_{0}=1, u_{1}=2$
c) $u_{n+1}-\frac{11}{6} u_{n}+u_{n-1}-\frac{1}{6} u_{n-2}=0, \quad u_{0}=0, u_{1}=1, u_{2}=2$
d) $6 u_{n+4}-5 u_{n+2}+u_{n}=0, \quad u_{0}=0, u_{1}=\frac{1}{\sqrt{2}}, \quad u_{2}=\frac{1}{2}, \quad u_{3}=\frac{1}{2 \sqrt{2}}$

SOLUTIONS

We will use the following notations: u_{n} - general solution, \bar{v}_{n} - general solution of the homogeneous equation, v^{*} - particular solution of the non-homogeneous equation.

Example 4. a) This is a nonlinear homogeneous equation of the first order. We represent it in a standard form

$$
u_{n+1}-\frac{1}{2} u_{n}=1
$$

Its corresponding homogeneous equation is: $u_{n+1}-\frac{1}{2} u_{n}=0$. Firstly we solve this homogeneous equation. We write down its characteristic equation: $z-\frac{1}{2}=0$. Obviously it has a root $z=\frac{1}{2}$. Then the general solution of the homogeneous equation has the form $\bar{v}_{n}=C_{1}\left(\frac{1}{2}\right)^{n}$.

Then we need to find at least one particular solution of the given non-homogeneous equation. As its right hand side is a constant, we are looking for a particular solution in the form: $v^{*}=d$, where d is a constant. We have $d-\frac{1}{2} d=1$, from where $d=2$, i.e. one particular solution is $v^{*}=2$. By properties 3^{0} and 4^{0} the general solution of the equation is a sum of the solutions of the homogeneous equation plus a particular solution, or the general solution of our equation is:

$$
u_{n}=C_{1}\left(\frac{1}{2}\right)^{n}+2
$$

For $n=0$ from the given initial condition $u_{0}=1$, by substituting it in the general solution we obtain $C_{1}=-1$. The particular solution of the problem for the assigned initial condition that we were looking for is: $u_{n}=2-\left(\frac{1}{2}\right)^{n}$, which is the answer to the given problem.
b) The equation is linearly non-homogeneous of the second order. As in the previous example, firstly we are looking for the general solution of the homogeneous equation.

$$
u_{n+2}-3 u_{n+1}+2 u_{n}=0 .
$$

The characteristic equation $z^{2}-3 z+2=0$ has simple roots $z_{1}=1, z_{2}=2$. Therefore the general solution of the homogeneous equation is $\bar{v}_{n}=C_{1}+C_{2} 2^{n}$. Now we are looking for at least one particular solution of the non-homogeneous equation. As its right hand side is -1, i.e. a constant, first of all we try a particular solution in the form $v^{*}=d$. By substitution we obtain $0=0$. Next we undertake the procedure in the form $v^{*}=d . n$. This time we get the equation $d(n+2)-3 d(n+1)+2 d n=-1$. After equating in front of the same monomials we find $d=1$, i.e. we have a particular solution $v^{*}=n$. In accordance with properties 3^{0} and 4^{0}, the general solution of the non-homogeneous equation is represented in the form: $u_{n}=\bar{v}_{n}+v^{*}$, i.e.

$$
u_{n}=C_{1}+C_{2} 2^{n}+n .
$$

By substitution under the assigned initial conditions we obtain the following system for C_{1}, C_{2} :

$$
\left\lvert\, \begin{aligned}
& C_{1}+C_{2}=1 \\
& C_{1}+2 C_{2}=1
\end{aligned} .\right.
$$

Its solutions are $C_{1}=1, C_{2}=0$. Therefore the solution of the problem is $u_{n}=1+n$.
c) The equation is linearly homogeneous of the third order. Its characteristic equation is

$$
z^{3}-\frac{11}{6} z^{2}+z-\frac{1}{6}=0 .
$$

By using Horner's method, by expansion, through the Mathematica system or in another way we find its roots $z_{1}=1, z_{2}=\frac{1}{2}, z_{3}=\frac{1}{3}$, which are simple. Therefore the general solution of the given equation has the form:

$$
\bar{v}_{n}=C_{1}+C_{2}\left(\frac{1}{2}\right)^{n}+C_{3}\left(\frac{1}{3}\right)^{n} .
$$

By substitution of the assigned initial conditions for $n=0,1,2$ we get the following system for determining the constants C_{1}, C_{2}, C_{3} :

$$
\begin{aligned}
& C_{1}+C_{2}+C_{3}=0 \\
& C_{1}+\frac{1}{2} C_{2}+\frac{1}{3} C_{3}=1 \\
& C_{1}+\frac{1}{4} C_{2}+\frac{1}{9} C_{3}=2
\end{aligned}
$$

Its solution is: $C_{1}=\frac{7}{2}, C_{2}=-8, C_{3}=\frac{9}{2}$.

Answer: $\quad u_{n}=-8\left(\frac{1}{2}\right)^{n}+\frac{9}{2}\left(\frac{1}{3}\right)^{n}+\frac{7}{2}$.
Note. We submit the corresponding calculations by means of the system Mathematica:

```
(* Example 4c - difference equations*)
Z = .
Solve \(\left[z^{3}-\frac{11}{6} z^{2}+z-\frac{1}{6}==0, z\right]\)
\(\left\{\left\{z \rightarrow \frac{1}{3}\right\},\left\{z \rightarrow \frac{1}{2}\right\},\{z \rightarrow 1\}\right\}\)
Clear [c1, c2, c3]
Solve \(\left[\left\{c 1+c 2+c 3=0, c 1+\frac{1}{2} c 2+\frac{1}{3} c 3=1, \quad c 1+\frac{1}{4} c 2+\frac{1}{9} c 3=2\right.\right.\)
\(\},\{c 1, c 2, c 3\}]\)
\(\left\{\left\{c 1 \rightarrow \frac{7}{2}, c 2 \rightarrow-8, c 3 \rightarrow \frac{9}{2}\right\}\right\}\)
```

d) The equation is homogeneous. Its characteristic equation is the biquadratic equation $6 z^{4}-5 z^{2}+1=0$, which has four simple roots $z_{1}=\frac{1}{\sqrt{2}}, z_{2}=-\frac{1}{\sqrt{2}}, z_{3}=\frac{1}{\sqrt{3}}, z_{4}=-\frac{1}{\sqrt{3}}$. Then the general solution of the difference equation has the form:

$$
u_{n}=C_{1}\left(\frac{1}{\sqrt{2}}\right)^{n}+C_{2}\left(-\frac{1}{\sqrt{2}}\right)^{n}+C_{3}\left(\frac{1}{\sqrt{3}}\right)^{n}+C_{4}\left(-\frac{1}{\sqrt{3}}\right)^{n} .
$$

Hence for $n=0,1,2,3$ and from the given initial conditions we obtain the system with respect of the constants $C_{1}, C_{2}, C_{3}, C_{4}$:

$$
\begin{aligned}
& C_{1}+C_{2}+C_{3}+C_{4}=0 \\
& \frac{1}{\sqrt{2}} C_{1}-\frac{1}{\sqrt{2}} C_{2}+\frac{1}{\sqrt{3}} C_{3}-\frac{1}{\sqrt{3}} C_{4}=\frac{1}{\sqrt{2}} \\
& \frac{1}{2} C_{1}+\frac{1}{2} C_{2}+\frac{1}{3} C_{3}+\frac{1}{3} C_{4}=\frac{1}{2} \\
& \frac{1}{2 \sqrt{2}} C_{1}-\frac{1}{2 \sqrt{2}} C_{2}+\frac{1}{3 \sqrt{3}} C_{3}-\frac{1}{3 \sqrt{3}} C_{4}=\frac{1}{2 \sqrt{2}} .
\end{aligned}
$$

Its solutions are: $C_{1}=2, C_{2}=1, C_{3}=-\frac{3}{2}, C_{4}=-\frac{3}{2}$.

Answer: $\quad u_{n}=2\left(\frac{1}{\sqrt{2}}\right)^{n}+\left(-\frac{1}{\sqrt{2}}\right)^{n}-\frac{3}{2}\left(\frac{1}{\sqrt{3}}\right)^{n}-\frac{3}{2}\left(-\frac{1}{\sqrt{3}}\right)^{n}$.
Note. We submit the corresponding calculations for solving the system by means of Mathematica:

```
(* Example 4d - difference equations*)
Solve \([\{c 1+c 2+c 3+c 4=0\),
    \(\frac{1}{\sqrt{2}} c 1-\frac{1}{\sqrt{2}}\) c2 \(+\frac{1}{\sqrt{3}}\) c3 \(-\frac{1}{\sqrt{3}}\) c \(4=\frac{1}{\sqrt{2}}\),
    \(\frac{1}{2} c 1+\frac{1}{2} c 2+\frac{1}{3} c 3+\frac{1}{3} c 4=\frac{1}{2}\),
    \(\left.\left.\frac{1}{2 \sqrt{2}} c 1-\frac{1}{2 \sqrt{2}} c 2+\frac{1}{3 \sqrt{3}} c 3-\frac{1}{3 \sqrt{3}} c 4=\frac{1}{2 \sqrt{2}}\right\},\{c 1, c 2, c 3, c 4\}\right]\)
\(\left\{\left\{c 1 \rightarrow 2, c 2 \rightarrow 1, c 3 \rightarrow-\frac{3}{2}, c 4 \rightarrow-\frac{3}{2}\right\}\right\}\)
```

Author: Snezhana Gocheva-Ilieva
Plovdiv University
snow@uni-plovdiv.bg

