Difference equations - examples

Example 3. Prove that the sequences

$$
v^{(1)}=\{1\}_{n=0}^{\infty}, v^{(2)}=\{n\}_{n=0}^{\infty}, v^{(3)}=\left\{n^{2}\right\}_{n=0}^{\infty}
$$

are linearly independent solutions of the difference equation:

$$
u_{n+3}-3 u_{n+2}+3 u_{n+1}-u_{n}=0
$$

SOLUTION

Problem 3. It is easy to check by substitution that $v^{(1)}=\{1\}_{n=0}^{\infty}$ is a solution of the given equation. Indeed:

$$
u_{n+3}-3 u_{n+2}+3 u_{n+1}-u_{n}=1^{n+3}-3 \cdot 1^{n+2}+3 \cdot 1^{n+1}-1^{n}=0 .
$$

By analogy for $v^{(2)}=\{n\}_{n=0}^{\infty}$ we have :

$$
u_{n+3}-3 u_{n+2}+3 u_{n+1}-u_{n}=n+3-3(n+2)+3(n+1)-n=0 .
$$

For the third sequence $v^{(3)}=\left\{n^{2}\right\}_{n=0}^{\infty}$:

$$
u_{n+3}-3 u_{n+2}+3 u_{n+1}-u_{n}=(n+3)^{2}-3(n+2)^{2}+3(n+1)^{2}-n^{2}=0 .
$$

Thus we have proved that the three sequences satisfy the equation.

Their linear independence follows from the fact that the determinant from the first 3 members of the three sequences is different from zero. So we calculate

$$
D=\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right|=2 \neq 0 \quad\left(\text { see property } 2^{0}\right) .
$$

