Difference equations - examples

Example 1. Find the general solution of the difference equations:
a) $u_{n+1}=\frac{1}{2} u_{n}$
b) $u_{n+2}=u_{n}$
c) $6 u_{n+2}-u_{n+1}-2 u_{n}=0$
d) $u_{n+1}+u_{n}+u_{n-1}=0$
e) $u_{n+1}=\frac{27}{10} u_{n}+\frac{1}{2} u_{n-1}+\frac{1}{5} u_{n-2}$
f) $u_{n+1}=u_{n}-\frac{1}{4} u_{n-1}$
g) $u_{n+1}=\frac{1}{6} u_{n}+\frac{1}{3} u_{n-1}+\frac{1}{2}$
h) $u_{n+1}-2 u_{n}+u_{n-1}=2$
i) $u_{n+4}-6 u_{n+2}+8 u_{n}=2^{n}$
j) $u_{n+3}+u_{n+2}-\frac{7}{4} u_{n+1}+\frac{1}{2} u_{n}=\frac{1}{2^{n}}+\frac{1}{3^{n}}$

SOLUTIONS, ANSWERS

Example 1. a) The characteristic equation $\rho(z)=z-\frac{1}{2}=0$ has a real root $z_{1}=\frac{1}{2}, \quad\left|z_{1}\right|<1$, therefore the general solution of the difference equation is: $u_{n}=C\left(\frac{1}{2}\right)^{n}$.
b) As the corresponding characteristic equation $\rho(z)=z^{2}-1=0$ has two different real roots $z_{1}=-1, \quad z_{2}=1$, the general solution of the difference equation is written down in the following form: $u_{n}=C_{1}(-1)^{n}+C_{2}$.
c) Solution: $u_{n}=C_{1}\left(-\frac{1}{2}\right)^{n}+C_{2}\left(\frac{2}{3}\right)^{n}$.
d) The characteristic equation $\rho(z)=z^{2}+z+1=0$ has two complexly conjugated roots $z_{1,2}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$, from where we calculate that $r=1, \quad \theta=\frac{\pi}{3}$. The general solution of the difference equation will be $u_{n}=C_{1} \cos \left(n \frac{\pi}{3}\right)+C_{2} \sin \left(n \frac{\pi}{3}\right)$.
e) Answer: $u_{n}=C_{1}\left(\frac{1}{5}\right)^{n}+C_{2}\left(\frac{1}{2}\right)^{n}+C_{3} 2^{n}$.
f) For the characteristic equation $\rho(z)=z^{2}-z+\frac{1}{4}=0$ we obtain two identical real roots $z_{1,2}=\frac{1}{2}$, and for the general solution of the difference equation we get respectively:

$$
u_{n}=C_{1}\left(\frac{1}{2}\right)^{n}+C_{2} n\left(\frac{1}{2}\right)^{n} .
$$

g) The roots of the characteristic equation are $z_{1}=\frac{1}{2}, z_{2}=\frac{2}{3}$, and the general solution of the homogeneous difference equation is: $\bar{v}_{n}=C_{1}\left(-\frac{1}{2}\right)^{n}+C_{2}\left(\frac{2}{3}\right)^{n}$. We are looking for a particular solution in the form $v^{*}=\beta$. By substitution in the given equation we find that $\beta=1$. Finally, for the general solution of the non-homogeneous equation we get:

$$
u_{n}=\bar{v}_{n}+v^{*}=C_{1}\left(-\frac{1}{2}\right)^{n}+C_{2}\left(\frac{2}{3}\right)^{n}+1 .
$$

h) In this case the characteristic equation has a double real root $z_{1,2}=1$. We are looking for the particular solution of the non-homogeneous equation in the form $v^{*}=\beta n^{2}$. Answer: $u_{n}=C_{1}+C_{2} n+n^{2}$.
i) Answer: $\quad u_{n}=C_{1}(-2)^{n}+C_{2} 2^{n}+C_{3}(-\sqrt{2})^{n}+C_{4}(\sqrt{2})^{n}+\frac{1}{16} n 2^{n}$.
j) Answer: $\quad u_{n}=C_{1}\left(\frac{1}{2}\right)^{n}+C_{2} n\left(\frac{1}{2}\right)^{n}+C_{3}(-2)^{n}+\frac{4}{5} n^{2}\left(\frac{1}{2}\right)^{n}+\frac{108}{7}\left(\frac{1}{3}\right)^{n}$.

Author: Snezhana Gocheva-Ilieva
Plovdiv University
snow@uni-plovdiv.bg

