10.4. Dijkstra's Algorithm

By: Snezhana Gocheva-Ilieva, snow@uni-plovdiv.bg

Basic problem 3

An oriented graph is given, the lengths of the arcs of which are all nonnegative, i.e. $R_{ij} \ge 0$. Find the minimal paths from a given node to all other nodes of the graph.

This problem is a special case of problem 2, which is solved in the previous paragraph and can be solved using Bellman-Ford's algorithm. In this case we offer a more efficient algorithm, requiring only $O(n^2)$ arithmetical operations, also known as Dijkstra's algorithm.

Formulas for Dijkstra's algorithm for a graph with n nodes

Let's consider for convenience the starting node as number 1. According to standards we V stands for the totality of nodes of the graph. We introduce another set T which at the beginning is equal to the set of nodes $\{2, 3, ..., n\}$, i.e. $T=V \setminus \{1\}$. We calculate in stages and write down the results in a table just like with Bellman-Ford's method. At every stage (row of the table) a main element is chosen from the remaining nodes T, equal to a min of D_i , with u standing for the number of the node for which a minimum is reached. At the next stage this knot is excluded from T because the distance for this point has reached its possible minimum. We continue this procedure until all nodes are excluded, i.e. until $T = \emptyset$.

$$k=1. D_i=R_{1i}, i=1, 2, \ldots, n.$$

k =2. A main element is chosen $D_u = \min \{D_i, i \in T\}, T = T \setminus \{u\}$. For all points from *T* we calculate

$$D_2 = \min \{D_2, D_u + R_{u,2}\},$$

(2)
$$D_3 = \min \{D_3, D_u + R_{u,3}\},$$

...
 $D_n = \min \{D_n, D_u + R_{u,n}\}.$

$$k = 3, 4, \ldots, n-1.$$

Example 5. Let's solve the problem from example 4 using Dijkstra's algorithm.

Solution. The distances matrix is

	1	0	1	∞	∞	∞	∞	
	2	∞	0	5	2	∞	7	
<i>R</i> =	3	∞	∞	0	∞	∞	1	
	4	2	∞	1	0	4	∞	,
	5	∞	∞	∞	3	0	∞	
	6	∞	1 0 ∞ ∞ ∞	∞	∞	1	0	

$$k=1, D_1=0, D_2=R_{12}=1, D_3=D_4=D_5=D_6=\infty. T=\{2, 3, 4, 5, 6\}.$$

k = 2. A main element is chosen $D_u = \min \{D_i, i \in T\} = 1$, i.e. u = 2, $D_u = 1$; $T = \{3, 4, 5, 6\}$. In the table the main element has been circled.

 $D_{3} = \min \{D_{3}, D_{2} + R_{2,3}\} = \min \{\infty, \underline{1+5}\} = 6,$ $D_{4} = \min \{D_{4}, D_{2} + R_{2,4}\} = \min \{\infty, \underline{1+2}\} = 3,$ $D_{5} = \min \{D_{5}, D_{2} + R_{2,5}\} = \min \{\infty, \underline{1+\infty}\} = \infty,$ $D_{6} = \min \{D_{6}, D_{2} + R_{2,6}\} = \min \{\infty, \underline{1+7}\} = 8.$

k =3. A main element is chosen $D_u = \min \{D_i, i \in T\} = 3$, i.e. $u = 4, D_u = 3; T = \{3, 5, 6\}$. $D_3 = \min \{D_3, D_4 + R_{4,3}\} = \min \{6, \underline{3+1}\} = 4$, $D_5 = \min \{D_5, D_4 + R_{4,5}\} = \min \{\infty, \underline{3+4}\} = 7$, $D_6 = \min \{D_6, D_4 + R_{4,6}\} = \min \{\underline{8}, 3 + \infty\} = 8$.

k =4. A main element is chosen $D_u = \min \{D_i, i \in T\} = 4$, i.e. $u = 3, D_u = 4; T = \{5, 6\}$. $D_5 = \min \{D_5, D_3 + R_{3,5}\} = \min \{\underline{7}, 4 + \infty\} = 7$, $D_6 = \min \{D_6, D_3 + R_{3,6}\} = \min \{8, \underline{4+1}\} = 5$.

k =5. A main element is chosen $D_u = \min \{D_i, i \in T\} = 5$, i.e. u = 6, $D_u = 5$; $T = \{6\}$.

 $D_5 = \min \{D_5, D_6 + R_{6,5}\} = \min \{7, \underline{5+1}\} = 6.$

The values circled are the sought minimal distances from node 1 to other nodes.

k	D_1	D_2	D_3	D_4	D_5	D_6	Т
1	0		8	8	8	8	{2,3,4,5,6}
2		1	6	3	8	8	{3,4,5,6}
3			4		7	8	{3,5,6}
4					7	5	{5,6}
5					6		{5}

Description of Dijkstra's algorithm using metalanguage

An oriented weighted graph is given (V, E) with *n* nodes *V* and arcs *E*, which does not have negative weights. Find the minimal distances from node numbered *p* to all the other nodes of the graph.

The distances matrix R is given and ongoing minimal distances are recorded in an array D. D[u] marks the main element, u is the number of its corresponding node. The set of unoptimized nodes up to a given stage is T. Incoming and outgoing operations have been skipped.

```
begin
for v \in V do D[v]:=R[p,v]; D[p]:=0;
T=V \setminus \{p\};
While T \neq \emptyset do
begin u:= random node w \in T, for which D[w] = \min\{D[q], q \in T\};
T:=T \setminus \{u\};
for v \in T do D[v]:= \min(D[v], D[u] + R[u,v])
end
end
```