### 10.4. Dijkstra's Algorithm

By: Snezhana Gocheva-Ilieva, snow@uni-plovdiv.bg

## Basic problem 3

An oriented graph is given, the lengths of the arcs of which are all nonnegative, i.e. $R_{i j} \geq 0$. Find the minimal paths from a given node to all other nodes of the graph.

This problem is a special case of problem 2, which is solved in the previous paragraph and can be solved using Bellman-Ford's algorithm. In this case we offer a more efficient algorithm, requiring only $O\left(n^{2}\right)$ arithmetical operations, also known as Dijkstra's algorithm.

## Formulas for Dijkstra's algorithm for a graph with $\boldsymbol{n}$ nodes

Let's consider for convenience the starting node as number 1. According to standards we $V$ stands for the totality of nodes of the graph. We introduce another set T which at the beginning is equal to the set of nodes $\{2,3, \ldots, \mathrm{n}\}$, i.e. $T=V \backslash\{1\}$. We calculate in stages and write down the results in a table just like with Bellman-Ford's method. At every stage ( row of the table ) a main element is chosen from the remaining nodes $T$, equal to a min of $D_{i}$, with $u$ standing for the number of the node for which a minimum is reached. At the next stage this knot is excluded from $T$ because the distance for this point has reached its possible minimum. We continue this procedure until all nodes are excluded, i.e. until $T=\varnothing$.

$$
k=1 . D_{i}=R_{1 i}, \quad i=1,2, \ldots, n .
$$

$k=2$. A main element is chosen $D_{u}=\min \left\{D_{i}, i \in T\right\}, T=T \backslash\{u\}$. For all points from $T$ we calculate
$D_{2}=\min \left\{D_{2}, D_{u}+R_{u, 2}\right\}$,

$$
\begin{equation*}
D_{3}=\min \left\{D_{3}, D_{u}+R_{u, 3}\right\}, \tag{2}
\end{equation*}
$$

$D_{n}=\min \left\{D_{n}, D_{u}+R_{u, n}\right\}$.
$k=3,4, \ldots, n-1$.
Example 5. Let's solve the problem from example 4 using Dijkstra's algorithm.

Solution. The distances matrix is

$$
\begin{aligned}
& R=\begin{array}{r}
1 \\
2 \\
3 \\
3 \\
4 \\
5
\end{array}\left[\begin{array}{cccccc}
0 & 1 & \infty & \infty & \infty & \infty \\
\infty & \infty & 0 & \infty & \infty & 7 \\
2 & \infty & 1 & 0 & 4 & \infty \\
\infty & \infty & \infty & 3 & 0 & \infty \\
\infty & \infty & \infty & \infty & 1 & 0
\end{array}\right] \\
& k=1, D_{1}=0, D_{2}=R_{12}=1, D_{3}=D_{4}=D_{5}=D_{6}=\infty . T=\{2,3,4,5,6\} .
\end{aligned}
$$

$k=2$. A main element is chosen $D_{u}=\min \left\{D_{i}, i \in T\right\}=1$, i.e. $u=2, D_{u}=1 ; T=$ $\{3,4,5,6\}$. In the table the main element has been circled.
$D_{3}=\min \left\{D_{3}, D_{2}+R_{2,3}\right\}=\min \{\infty, \underline{1+5}\}=6$,
$D_{4}=\min \left\{D_{4}, D_{2}+R_{2,4}\right\}=\min \{\infty, \underline{1+2}\}=3$,
$D_{5}=\min \left\{D_{5}, D_{2}+R_{2,5}\right\}=\min \{\infty, \underline{1+\infty}\}=\infty$,
$D_{6}=\min \left\{D_{6}, D_{2}+R_{2,6}\right\}=\min \{\infty, \underline{1+7}\}=8$.
$k=3$. A main element is chosen $D_{u}=\min \left\{D_{i}, i \in T\right\}=3$, i.e. $u=4, D_{u}=3 ; T=$ $\{3,5,6\}$.
$D_{3}=\min \left\{D_{3}, D_{4}+R_{4,3}\right\}=\min \{6, \underline{3+1}\}=4$,
$D_{5}=\min \left\{D_{5}, D_{4}+R_{4,5}\right\}=\min \{\infty, \underline{3+4}\}=7$,
$D_{6}=\min \left\{D_{6}, D_{4}+R_{4,6}\right\}=\min \{8,3+\infty\}=8$.
$k=4$. A main element is chosen $D_{u}=\min \left\{D_{i}, i \in T\right\}=4$, i.e. $u=3, D_{u}=4 ; T=$ $\{5,6\}$.
$D_{5}=\min \left\{D_{5}, D_{3}+R_{3,5}\right\}=\min \{7,4+\infty\}=7$, $D_{6}=\min \left\{D_{6}, D_{3}+R_{3,6}\right\}=\min \{8, \underline{4+1}\}=5$.
$k=5$. A main element is chosen $D_{u}=\min \left\{D_{i}, i \in T\right\}=5$, i.e. $u=6, D_{u}=5 ; T=$ \{6\}.
$D_{5}=\min \left\{D_{5}, D_{6}+R_{6,5}\right\}=\min \{7, \underline{5+1}\}=6$.
The values circled are the sought minimal distances from node 1 to other nodes.

| $k$ | $D_{1}$ | $D_{2}$ | $D_{3}$ | $D_{4}$ | $D_{5}$ | $D_{6}$ | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\{2,3,4,5,6\}$ |
| 2 |  | 1 | 6 | 3 | $\infty$ | 8 | $\{3,4,5,6\}$ |
| 3 |  |  | 4 |  | 7 | 8 | $\{3,5,6\}$ |
| 4 |  |  |  |  | 7 | 5 | $\{5,6\}$ |
| 5 |  |  |  |  | 6 |  | $\{5\}$ |

## Description of Dijkstra's algorithm using metalanguage

An oriented weighted graph is given ( $V, E$ ) with $n$ nodes $V$ and arcs $E$, which does not have negative weights. Find the minimal distances from node numbered $\boldsymbol{p}$ to all the other nodes of the graph.

The distances matrix $R$ is given and ongoing minimal distances are recorded in an array $D . D[u]$ marks the main element, $u$ is the number of its corresponding node. The set of unoptimized nodes up to a given stage is $T$. Incoming and outgoing operations have been skipped.

```
begin
for \(v \in V\) do \(D[v]:=R[p, v] ; D[p]:=0\);
\(T=V \backslash\{p\}\);
While \(T \neq \varnothing\) do
    begin \(u\) := random node \(w \in T\), for which \(D[w]=\min \{D[q], q \in T\}\);
        \(T:=T \backslash\{u\} ;\)
        for \(v \in T\) do \(D[v]:=\min (D[v], D[u]+R[u, v])\)
    end
end
```

