

Problems on solving equations with one unknown variable

1) Calculate the real root of the equation with accuracy ε by the indicated method after localizing it in advance:

a) x³ + 2x + 7,8 = 0, ε = 10⁻², bisection method
b) x + e^x = 0, ε = 10⁻³, method of chords
c) e^x - x² - 2x - 2 = 0, ε = 10⁻³, Neuton's method
d) x⁴ - 4x - 1 = 0, ε = 10⁻², bisection method
e) x⁴ + 2x³ - x - 1 = 0, ε = 10⁻³, combined method
f) 3x - cos(x) = 1, ε = 10⁻³, tangents
g) xcos(x) = ln(x), ε = 10⁻², bisection method
h) lg(x) = 3x, ε = 10⁻⁴, the smallest positive root with Neuton's method
i) xlg(x) = 1, ε = 10⁻⁴, combined method
j) x⁴ - 9x³ - 2x² + 120x - 130 = 0 has exactly four different real roots in

each one.

2) Build a convergent MCA (method of consecutive approximations) to specify the smaller root of the equation $0.1x^2 - x + 1 = 0$. How many iterations must be made in order to guarantee accuracy 10^{-3} for $x_0 = 2$? Make three iterations.

3) Build a convergent MCA (method of consecutive approximations) to specify the root in the given interval. How many iterations must be made in order to guarantee accuracy 10^{-3} for the given x_0 ? Make three iterations for:

a)
$$x^{3} + x - 1000 = 0$$
, [9;10]; $x_{0} = 9,5$
b) $x^{2} - x - 0,5 = 0$, [-1;0]; $x_{0} = 0,5$
c) $x \lg(x) = 1$, [2;3]; $x_{0} = 2,5$
d) $x - \sin(x) = 0,25$, [1;1,5]; $x_{0} = 1,25$

4) It is known that the equation $x + \ln(x) = 0$ has a root $\alpha \approx 0.5$. For its calculation there are suggested four iteration formulas:

A)
$$x_{n+1} = -\ln(x_n)$$
, B) $x_{n+1} = \exp(-x_n)$, C) $x_{n+1} = 0.5(x_n + \exp(-x_n))$,

- D) $x_{n+1} = \sin(x_n) + 0.25$.
- a) which of the formulas above can be used?
- b) make three iterations using the fastest formula.

5) Prove that the iteration process $x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right)$ for a > 0, for calculating \sqrt{a}

has a quadratic speed of convergence. By using this formula, calculate $\sqrt{10}$ with four correct decimal digits (Heron's formula).

6) Work out an iteration formula for calculating $\sqrt[n]{a}$ by building Newton's method for solving the equation $x^n - a = 0$.

Author: Doychin Boyadzhiev, <u>dtb@uni-plovdiv.bg</u> Plovdiv University