Fourth-order Runge-Kutta Method for systems of ordinary differential equations using Mathematica

"RK_5sys_EN_1.gif"

Аnotation         

"RK_5sys_EN_2.gif"

"RK_5sys_EN_3.gif"

"RK_5sys_EN_4.gif"

"RK_5sys_EN_5.gif"

"RK_5sys_EN_6.gif"

"RK_5sys_EN_7.gif"

"RK_5sys_EN_8.gif"

"RK_5sys_EN_9.gif"

"RK_5sys_EN_10.gif"

"RK_5sys_EN_11.gif"

"RK_5sys_EN_12.gif"

"RK_5sys_EN_13.gif"

"RK_5sys_EN_14.gif"

"RK_5sys_EN_15.gif"

"RK_5sys_EN_16.gif"

"RK_5sys_EN_17.gif"

"RK_5sys_EN_18.gif"

"RK_5sys_EN_19.gif"

"RK_5sys_EN_20.gif"

"RK_5sys_EN_21.gif"

"RK_5sys_EN_22.gif"

"RK_5sys_EN_23.gif"

1 1. 2.
1.1 0.886873 2.15592
1.2 0.744792 2.32486
1.3 0.569252 2.50858
1.4 0.355089 2.70883
1.5 0.0964108 2.92739

Conclusion:   The solution derived using the Runge-Kutta method O("RK_5sys_EN_24.gif") is in the form of a table of the functions y(x) and z(x), shown in the second and third columns of the table above, respectively.  Since the  local apriori error of the method is O("RK_5sys_EN_25.gif") (or global error is  O("RK_5sys_EN_26.gif") ) and here h=0.1, then these solutions must be rounded to three symbols after the decimal point.

Graphics of the solution     

"RK_5sys_EN_27.gif"

"RK_5sys_EN_28.gif"

"RK_5sys_EN_29.gif"

"RK_5sys_EN_30.gif"


Created by Wolfram Mathematica 6.0  (22 September 2008) Valid XHTML 1.1!