Two-order Runge-Kutta Method for systems of ordinary differential equations using Mathematica

"RK_3sys_EN_1.gif"

Аnotation        

"RK_3sys_EN_2.gif"

"RK_3sys_EN_3.gif"

"RK_3sys_EN_4.gif"

"RK_3sys_EN_5.gif"

"RK_3sys_EN_6.gif"

"RK_3sys_EN_7.gif"

"RK_3sys_EN_8.gif"

"RK_3sys_EN_9.gif"

"RK_3sys_EN_10.gif"

"RK_3sys_EN_11.gif"

"RK_3sys_EN_12.gif"

"RK_3sys_EN_13.gif"

"RK_3sys_EN_14.gif"

"RK_3sys_EN_15.gif"

"RK_3sys_EN_16.gif"

"RK_3sys_EN_17.gif"

"RK_3sys_EN_18.gif"

0. 1. 2.
0.1 0.8925 2.57164
0.2 0.714405 3.00638
0.3 0.47236 3.36747
0.4 0.167222 3.68692
0.5 -0.203373 3.98705

Conclusion:   The solution derived using the Runge-Kutta method O("RK_3sys_EN_19.gif") is in the form of a table of the variable functions y(x) and z(x), shown in the second and third columns of the table above, respectively.  Since the  local apriori error of the method is O("RK_3sys_EN_20.gif") (or global error is  O("RK_3sys_EN_21.gif") ) and here h=0.1, then these solutions must be rounded to three symbols after the decimal point.

Graphic of the solution  

"RK_3sys_EN_22.gif"

"RK_3sys_EN_23.gif"

"RK_3sys_EN_24.gif"

"RK_3sys_EN_25.gif"

"RK_3sys_EN_26.gif"

"RK_3sys_EN_27.gif"


Created by Wolfram Mathematica 6.0  (22 September 2008) Valid XHTML 1.1!