Two-order Runge-Kutta Method using Mathematica

"RK_3_EN_1.gif"

Аnotation         

"RK_3_EN_2.gif"

"RK_3_EN_3.gif"

"RK_3_EN_4.gif"

"RK_3_EN_5.gif"

"RK_3_EN_6.gif"

"RK_3_EN_7.gif"

"RK_3_EN_8.gif"

"RK_3_EN_9.gif"

"RK_3_EN_10.gif"

"RK_3_EN_11.gif"

"RK_3_EN_12.gif"

"RK_3_EN_13.gif"

"RK_3_EN_14.gif"

"RK_3_EN_15.gif"

"RK_3_EN_16.gif"

"RK_3_EN_17.gif"

1 1.
1.1 1.32405
1.2 1.69982
1.3 2.12905
1.4 2.61336
1.5 3.15422

Conclusion:   The solution derived using the Runge-Kutta method O("RK_3_EN_18.gif") is in the form of a table of the variable function y(x), shown in the second column of the table above.  Since the  local apriori error of the method is O("RK_3_EN_19.gif") (or global error is  O("RK_3_EN_20.gif") ) and here h=0.1, then these solutions must be rounded to three symbols after the decimal point.

Graphic of the solution     

"RK_3_EN_21.gif"

"RK_3_EN_22.gif"

"RK_3_EN_23.gif"


Created by Wolfram Mathematica 6.0  (22 September 2008) Valid XHTML 1.1!