Euler's Method for systems of ordinary differential equations using Mathematica

"Eulersys_EN_1.gif"

Anotation        

"Eulersys_EN_2.gif"

"Eulersys_EN_3.gif"

"Eulersys_EN_4.gif"

"Eulersys_EN_5.gif"

"Eulersys_EN_6.gif"

"Eulersys_EN_7.gif"

"Eulersys_EN_8.gif"

"Eulersys_EN_9.gif"

"Eulersys_EN_10.gif"

"Eulersys_EN_11.gif"

"Eulersys_EN_12.gif"

"Eulersys_EN_13.gif"

"Eulersys_EN_14.gif"

"Eulersys_EN_15.gif"

"Eulersys_EN_16.gif"

"Eulersys_EN_17.gif"

"Eulersys_EN_18.gif"

"Eulersys_EN_19.gif"

"Eulersys_EN_20.gif"

"Eulersys_EN_21.gif"

1. 1. -1.
1.1 1.3 -1. 3. 0.
1.2 1.64 -0.986425 3.4 0.135747
1.3 2.0213 -0.959639 3.81303 0.267858
1.4 2.44552 -0.920172 4.24221 0.394671
1.5 2.91475 -0.86864 4.69224 0.515322
1.6 3.43168 -0.805683 5.16928 0.629572
1.7 3.99976 -0.731919 5.6808 0.737639
1.8 4.6233 -0.647913 6.23546 0.840061
1.9 5.30761 -0.554154 6.8431 0.937592
2. 6.05908 -0.451042 7.5147 1.03112

Conclusion:  The solution derived using the Euler's method is in the form of a table of the variable functions y(x), z(x), as shown in the second and third column of the table above, respectively.  Since the априорна error of the method is О("Eulersys_EN_22.gif") and here h=0.1, then these solutions must be taken rounded only to the second symbol after the decimal point.

Graphic of the solution

"Eulersys_EN_23.gif"

"Eulersys_EN_24.gif"

"Eulersys_EN_25.gif"

"Eulersys_EN_26.gif"

"Eulersys_EN_27.gif"

"Eulersys_EN_28.gif"

"Eulersys_EN_29.gif"

"Eulersys_EN_30.gif"

"Eulersys_EN_31.gif"

"Eulersys_EN_32.gif"

"Eulersys_EN_33.gif"

"Eulersys_EN_34.gif"


Created by Wolfram Mathematica 6.0  (22 September 2008) Valid XHTML 1.1!