
  
 

 

Method of simple iteration for solving systems of linear algebraic 

equations (Jacobi  method)  
 

Let there be given a system of linear algebraic equations (SLAE) 
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System (1) can be modified in the following equivalent form: 
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Using formula (2) it is possible to construct the iteration process: 
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or in extended form 
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he iteration process (3) results in the vector sequence 
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From theory it is known, that in order to be sufficient for sequence (4) to 
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erge towards the root *x  for every )0(x  is for at least one norm of matrix C  to 

be smaller than 1, i.e. at least one of th llowing inequalities should be true a), b) 

or c):   
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For the closeness of the approximated solution  to the exact solution  the 

following estimate is valid: 
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Using formula (6) can be found the minimal number of iterations  k  needed 

to achieve some desired accuracy of ε . To do this it is sufficient to solve the 

following inequality regarding k: 
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NOTE! 

The simple iteration method is especially suitable when the principle 

diagonal of matrix А is a dominating one, i.e.  
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Algorithm 

 1.  Constructing matrix  C, 

 2.  Convergence check using formulas (5), 

 3.  Finding the minimal number of iterations in order to achieve the given 

accuracy ε  using formula (7), 

 4.  Implementing the resulting number of iterations (using formulas (3)). 

 

Comments.  Points   3.  and   4.  can be replaced by the so called stop criterion: 

If ε<− − )1()( kk xx  , then  with accuracy )(* kxx = ε  .  

In coordinate form:  

If ε<− − )1()( k
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 Example. Perform five iterations using the Jacobi method for the system given 

below. Work with an intermediate accuracy of six digits after the decimal comma, 

and for initial guess choose the zero vector  . )0,0,0()0( =x
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Solution:     
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  2.  Convergence check: 
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 4.  Implementation of five iterations using formulas (3), which here have the 

following form:  
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First iteration: 
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Second iteration: 
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 Do the remaining iterations on your own. The results have been entered in 

table 2. 
Table 2 

)(kx  
     k 
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0 0 0 0 
1 0,5 1,5 0,5 
2 0,875 1,75 0,875 
3 0,9375 1,9375 0,9375 
4 0,984375 1,96875 0,984375 
5 0,992188 1,992188 0,992188 
… ... ... ... 

*x  1 2 1 
 

How much iteration would be enough to calculate the same system with an accuracy 

 with second norm? 510−=ε

Solution:  

Here we implement point   3.  of the algorithm. We have  Tx )0,0,0()0( =  →   
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We solve the inequality with regard to k  
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We choose  k = 19. 

 

Comment. If the diagonal elements of matrix А are only ones, then the method of 

consecutive approximations and Jacobi’s method becomes one and the same thing. 
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