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Abstract. Optimization of performance of thermal containers installed in advanced buildings
stimulates the multidisciplinary research, covering civil and mechanical engineering studies,
material testing and physical, mathematical and computational analysis, up to the implemen-
tation of algorithms. This paper pays attention namely to the hot-wire identification of thermal
characteristics of materials, with references to more general optimization tools.
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1 Introduction
Decreasing amount of energy sources, together with new achievement in the design of advanced
materials, structures and technologies, stimulates the multidisciplinary research coupling civil and
mechanical engineering studies, material testing and physical, mathematical and computational anal-
ysis. The European directive [2] forces the passive energy standard, whose proper formulation comes
from [1], for both new and reconstructed buildings since 2020. One promising way for substantial
reduction of energy requirements of buildings, namely those with controlled interior temperature, is
connected with the design and construction of high-temperature thermal containers.

A representative example of such research activities seems to be the collaboration of the Brno Uni-
versity of Technology, Faculty of Civil Engineering (FCE BUT), with the Swedish specialists in
fibre-optics-based heat production systems and with the Czech firm Alumistr a. s. Hrušovany (20 km
southern from Brno), supported by the Technological Agency of the Czech Republic 2012–15. Apart
from the successful construction and performance of a model house, supplied by the massive silicate
thermal container, with no requirements to external energy sources, this project brings a strong mo-
tivation for further research in optimized choice of materials for thermal containers in the first step,
followed by more general optimization of design of relevant structures and equipments. Since the
technical details of the project solutions are not available for free access yet, the illustrative Fig. 1
shows just the first small model of the thermal container and documents one of the first series of
high-temperature experiments with material specimens intended for the real container, namely for the
evaluation of their basic thermal technical characteristics.
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Fig. 1.  A small model of thermal container (left photo). A cylindrical silicate
specimen in the laboratory oven at the temperature 700 ◦C (right photo).

Much more consideration related to thermal collection and storage can be found in [4]. Practical 
equipments make use of i) sensible heat of high-temperature resistant materials by [5], or ii) ma-
terials involving phase-change components, appropriate for intended temperature levels, as parafine 
capsules, by [6]. In this paper we shall pay attention to i) with selected silicate materials, compatible 
with [7], namely to the computational evaluation of their thermal conductivity and diffusivity, as a 
substantial information for the reasonable design of the heat container; this will be supported by the 
hot-wire experimental setting, generalizing the approach of the European standard [8].

As a model problem for our physical, mathematical and computational analysis, we shall start with 
the study of of pure thermal conduction in an (at least macroscopically) isotropic medium without 
internal heat sources. However, the dependence of material characteristics on the temperature cannot 
be neglected, as usual in the case of temperature near to 20 ◦C, prescribed for building interiors 
– cf. [9]. This brings serious difficulties t o t he a nalysis o f c orresponding b oth d irect a nd inverse 
problems, as well as to the relevant experiment planning.

2 A direct problem
Proper formulation of thermal processes starts with the conservation principles of selected scalar 
quantities, as for mass, (linear and angular) momentum and energy, from classical thermomechanics. 
Here, for simplicity, we shall work only with the conservation of thermal energy, with the absolute 
Kelvin temperature θ(x, t) as the reference variable. Here x = (x1, x2, x3) refers to the Cartesian 
coordinate system in the Euclidean space R3, whereas t denotes the time from some interval I = 
[0, T ], assuming a finite positive T .

Let Ω be an open set (typically a domain) in R3 with its boundary ∂Ω where the (formally outward) 
unit normal vector ν(x) = (ν1(x), ν2(x), ν3(x)) can be introduced almost everywhere (which needs 
certain smoothness assumption – cf. [11], p. 16). We shall use upper dots instead of ∂/∂t for brevity, 
as well as Hamilton operators ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) and central dots for scalar products in R3. 
Consequently we can write e. g. Laplace operators briefly as ∆ = ∂ 2/∂x21+∂2/∂x22+∂2/∂x23 = ∇·∇.

Following [10], p. 5, the classical formulation of energy conservation reads

ε̇+∇ · q = 0 on Ω× I (1)
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where ε [J/m3] represents the thermal energy (per unit volume) and q = (q1, q2, q3) the thermal flux
[W/m2]. Clearly (1) must be supplied by appropriate empirical constitutive equations coupling ε and
q with θ. Here we shall suppose

ε̇ = κθ̇ , q = −λ∇θ on Ω× I , (2)

with two positive-valued material characteristics λ and κ: λ [W/(m.K)] is well-known as the thermal
conductivity, κ [J/(m3.K)] as the thermal capacity per unit volume; frequently the thermal capacity c
[J/(kg.K)] is considered instead of κ, with the evident relation κ = cρ where ρ is the material density
[kg/m3] (evaluable from simple experiments in most cases). Let us notice that we are allowed to as-
sume λ and κ independent of t (unlike x) directly, but their dependence on θ(x, t) may be substantial.

For simplicity, we shall consider only the Cauchy initial condition

θ(., 0) = θ0 on Ω (3)

and the Neumann boundary one
q · ν = q∗ on ∂Ω× I ; (4)

θ0 must be prescribed on Ω and q∗ on ∂Ω× I . Inserting (2) into (1), we have

κθ̇ −∇ · (λ∇θ) = 0 on Ω× I , (5)

and exploiting (2), too, similarly

−λ∇θ · ν = q∗ on ∂Ω× I . (6)

Moreover, the thermal diffusivity α [m2/s] is also introduced in many papers, alternatively to κ or c.
The motivation is clear: for homogeneous materials, i. e. with constant λ and κ, taking α = λ/κ, we
can rewrite (5) to

θ̇ − α∆θ = 0 on Ω× I . (7)

However, to derive the analogy of (7) for inhomogeneous materials is not easy; this requires the
application of the both enthalpy and Kirchhoff transforms by [11], pp. 68, 253, 291. Moreover, even
for homogeneous materials, λ in (6) cannot be replaced by α (which does not allow the separate
evaluation of α later in an inverse problem).

For numerical evaluation of θ, at least for all cases where no sufficiently simple forms of analytical
solutions are available, the weak formulation of (5), (3) and (6) is useful. Using the standard notation
of Lebesque, Sobolev, Bochner, etc. (abstract) function spaces, compatible with [11], pp. 10, 15,
23, and (., .) for scalar products in both L2(Ω) and L2(Ω)3 (Lebesgue intergals) and 〈., .〉 for scalar
products in L2(∂Ω) (Hausdorff integrals), we can write (5) and (6) in the integral form

(v, κθ̇) + (∇v, λ∇θ) = 〈v, q∗〉 on I (8)

for every test function v ∈ W 1,2(Ω); (3) remains to be consider separately. It is natural to assume
θ0 ∈ W 1,2(Ω) and, at least for λ, κ ∈ L∞(Ω), moreover q∗ ∈ L2(∂Ω). Consequently, for the linear
parabolic system of evolution (8), using the convergence results for Rothe sequences by [11], p. 202,
the existence and uniqueness of θ ∈ L2(I,W 1,2(Ω) with θ̇ ∈ L2(I, L2(Ω) can be verified without
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difficulties. However, this is not true for λ and κ dependent of θ where additional growth conditions
are necessary; for more details see [12], with numerous references to [11] (namely on the available
results for quasilinear equations of evolution) again.

Let us remark that (5) and (6) can be derived from (8) using the Green-Ostrogradskiı̌ theorem, at least
in the distributional sense. However, this does not guarantee any regularity (which may be needed in
applications), as discussed in [11], p. 215.

In particular, for constant λ and κ, various special (even classical) solutions of (5) can be found in
the literature; they differs in the reasonable applicability of (6) for special geometrical configurations,
often using numerical techniques again, as boundary elements on ∂Ω instead of finite elements on Ω.
In this paper we shall utilize the following result of [13]:

θ = θ0 +
Q

4πλ
Ei
(
r2

4αt

)
, (9)

including the exponential integral

Ei(ς) =

∫ ∞
ς

exp(v)

v
dv = −γ − ln ς + ς + ε(ς) , ε(ς) =

∞∑
k=2

ςk

k.k!
(10)

where γ ≈ 0.577216 is the Euler-Mascheroni constant (removable from practical computations), ς
may be an arbitrary real number and x1 = r cosφ, x2 = r sinφ, x3 = z with r ≥ 0, 0 ≤ φ < 2π
and arbitrary real z, neglecting the dependence of θ on φ and z and assuming (as a special case of
(3)) constant initial temperature θ0 everywhere. Let us consider Ω covering R3 except the axis x3.
Inserting (9) into (7), we can see (MAPLE, MATLAB toolbox symbolic or similar software support
can be recommended) that (7), degenerated to

θ̇

α
= θ′′ +

θ′

r
on Ω× I , (11)

is satisfied automatically; primes here mean ∂/∂r. Nevertheless, (4) must be replaced by the physi-
cally motivated limit formulation

lim
r→0

−λθ′

q∗(r)
= 1 , q∗(r) =

Q

2πr
, (12)

assuming the thermal power Q [W/m], related to the unit length on the axis x3, occurring everywhere
at the position r = 0, starting from t = 0.

These considerations can be generalized in several directions. Especially for an infinitely long cylin-
der Ω with the missing axis x3 and with a finite diameter a (thus 0 < r < a <∞) [14] demonstrates
how the standard Laplace transform is able to convert (11) to the analysis of certain Bessel equation;
consequently we have to work with the Bessel functions of the first and second kind instead of ex-
ponential integrals (the limit passage a → ∞ comes back to (9) naturally). However, all relevant
quasi-analytical computational formulae are much more complicated than (9), thus their exploitation
in inverse problems (as the aim of this paper) is rather limited.

3 An inverse problem
As a model inverse problem, let us consider a direct problem introduced in the previous section with
these modifications: i) no values of λ and κ are known a priori (except some their rough initial
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estimate), ii) in addition to (8) and (3) some values θ∗ are prescribed on Γ, introduced as some surface
(typically not included in ∂Ω) inR3. Considering some a priori weight functions w ∈ L∞(Γ×I) with
values from [0,1] (related to preparation of real experiments), we can believe that the best available
values of λ and κ correspond to the least-squares approach motivated minimum of

F (λ, κ) = 〈〈θλ,κ − θ∗, w(θλ,κ − θ∗)〉〉 (13)

where 〈〈., .〉〉 refers to a scalar product in L2(Γ×I) and θλ,κ is any solution of (8) and (3) for admissible
λ and κ.

In particular, for constant values λ and κwe can introduce F in (13) as a (rather complicated) function
of 2 real variables; in more general cases, namely those disturbing the linearity of (8), it must be con-
sidered as a functional defined on an appropriate infinite-dimensional function space. The pure linear
case is studied in great details in [16] an in numerous references therein. For a priori given values of
κ and sufficiently large Γ (with non-zero valuse of w) the dependence of λ on θ can be handled by
[15] (although its approach has been suggested for capillary conduction, i. e. on the conservation of
mass from the physical point of view, unlike the conservation of energy here).

Unfortunately, the quite general formulation (13) hides a lot of expectable difficulties: ill-possedness,
numerical instability, need of artificial regularization, etc., as explained in [17], p. 255. Thus for
practical identification of material characteristics the better choice is to pay attention to the careful
organization of all experiments, to be able to make use of sufficiently simple computational formulae:
in spherical coordinates for hot-ball measurements, in cylindrical coordinates for hot-wire measure-
ments, like (9) here, in Cartesian coordinates for hot-plate measurements, etc. Another argument
supporting this choice, important in this paper, is that an inexpensive experimental setting, covering
all temperatures expectable in a thermal container, is not available, thus a series of measurements at
several temperature levels, preserving nearly constant values of λ and κ, can represent a reasonable
alternative.

Technical standards respect such arguments. By [8], coming from the above introduced cylindrical
setting, we need:

a) a very long and thin heating wire of circular shape, whose thermal conductivity and capacity
can be neglected,

b) a material specimen considerable as a very long rotational cylinder of large radius, whose axis
lies just in the heating wire,

c) supplying to the specimen, starting from the zero time t, related to its unit length, to all direc-
tions, still the same thermal power Q, as needed by (9),

d) a material specimen prepared as homogeneous and isotropic for macroscopic calculations, with
some effective values of scalar characteristics λ and α (and thus also κ),

e) all independent of θ in practice,

f) respecting (3) with constant θ0.

Consequently (9) is applicable to corresponding direct calculations. For inverse ones, [8] works with
the location of temperature sensor Γ degenerated to one point very close to the axis of rotation, i. e.
lying just on the axis of the heating wire theoretically. This is impossible in practice, but needed only
for the removal of all additive terms excepts the second one from the decomposition of Ei(.) in (10):
if two temperatures by (9) in different times are subtracted, the first additive term vanishes and the
third and all other terms are negligible, which gives
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θ(0, t)− θ(0, t×) ≈ Q

4πλ
ln
t

t×
(14)

for any time t ∈ I (except t = 0 naturally) and some comparative time t∗ ∈ I , different from t.
Since the values θ∗(t) − θ∗(t×) for r close to zero are available, at least for a large number of time
steps t ∈ I and one appropriate t× ∈ I , (14) is applicable to the evaluation of λ using the linear
regression analysis, interpretable as a special case of minimization of F from (13) with missing κ;
for the repeatability and certain improvements of such evaluations see [18].

The principal drawback of the identification procedure of λ based on (14) is the ignorance of the
influence of κ or α. Moreover, the temperature is usually recorded also later when no thermal power is
active, which is not exploited. As a potential remedy, following [14], let us consider Γ containing two
sensors at some locations r = r1 and r = r2 where 0 < r1 < r2 < ∞; the temperature θ is recorded
there for selected increasing positive values of time steps t1, . . . , tm, . . . tn where m and n > m are
some integer indices. We assume that the thermal power Q is active for 0 < t ≤ tm = τ , whereas the
thermal power−Q is active for t ≥ tm; thus the thermal power vanishes for τ < t ≤ T . The aim now
is to evaluate of λ and α thanks to the above announced temperature values θ∗1k, . . . , θ∗mk, . . . θ∗nk.

During the hot-wire experimentQ is usually constant from t = 0 up to t = τ where τ is some positive
time. The temperature θ is recorded in some locations r1 and r2 for selected increasing positive values
of time steps t1, . . . , tm, . . . , tn where m and n > m are some integer indices: here we shall suppose
that the thermal power Q is active for 0 ≤ t ≤ tm = τ , whereas the thermal power −Q is active for
t ≥ tm; consequently the thermal power vanishes for t > τ .

The main aim is to identify unknown values of λ and α thanks to the above announced temperature
values θ∗1k, . . . , θ∗mk, . . . , θ∗nk where the last index k ∈ {1, 2} refers to the 1st or 2nd sensor. The
corresponding computed values in the same time steps are denoted by θ1k, . . . , θmk, . . . , θnk. Consid-
ering (for simplicity here) the time step tm as the reference one, consequently for any j ∈ {1, . . . ,m}
from (15) we obtain

θj − θm =
Q

4πλ
ln
tj
tm

+
Q

4πλ
· 1

4αr2k

(
1

tj
− 1

tm

)
(15)

− Q

4πλ

(
ε

(
1

4αr2ktj

)
− ε
(

1

4αr2ktm

))
.

Repeating the same arguments to any j ∈ {m+ 1, . . . , n}, we receive similarly

θj − θm =
Q

4πλ
ln

tj
tj − tm

+
Q

4πλ
· 1

4αr2k

(
1

tj
− 1

tj − tm

)
(16)

− Q

4πλ

(
ε

(
1

4αr2ktj

)
− ε
(

1

4αr2k(tj − tm)

))
.

Clearly the formulae (15) and (16) are not suitable to direct evaluation of λ and α because of the
lack of unicity and of and the need of some relaxation of the effect of random (or even system)
measurement errors. Let us utilize the least squares approach, motivated by (13), again, with non-
zero weights wj on discrete time steps tj where some indices j are taken from 1, . . . ,m− 1 for
(15) or from m+ 1, . . . , n for (16); such indices are intended as admissible ones. Thus the two-step
algorithm is available:
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1) considering some reasonable estimates of λ and α in all right-hand side additive terms of (15)
and (16) except the first ones, multiplying (15) by wj ln(tj/tm) and (16) by wj ln(tj/(tj − tm))
formally and summing up over all admissible j, from the result we are able to compute just one
improved value of λ,

2) in the analogous way, knowing the estimates of λ and α in all right-hand side additive terms
of (15) and (16) except the second ones, multiplying (15) by wj(1/tj − 1/tm) and (16) by
wj(1/tj − 1/(tj − tm)) formally and summing up over all admissible j, from the result we are
able to compute just one improved value of α.

In the usual configuration with r1 close to zero (for certain compatibility with [8]) and r1<<r2, the
following iteration algorithm is suitable: from some estimates α and λ to improve λ from the first
sensor measurements, then to improve α from the second sensor measurements and to repeat such
cycle until the differences between iterated values are not negligible.

Fig. 2.  Hot-wire experiment configuration (left scheme) 
and laboratory oven (right scheme).

Fig. 3. Example of MATLAB-based identification procedure of λ and α for an experimental 
specimen at the reference temperature 786 ◦C: development of θ at 2 computational positions 

(left graph), also in the semilogarithmic scale (right graph).
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4 Example of experimental and computational results
The practical configuration for high-temperature laboratory experiments is evident from Fig. 3; more
technical details (including all oven components, their sizes, etc.) can be found in [7]. Unlike the
heating kanthal (Fe, Cr, Al and Co alloy) wire, applied specimens have not (theoretically assumed)
cylindrical shape, thus all experiments should work with T small enough, to suppress the effects of
thermal transfer on their real exterior boundaries. The value of Q is not very substantial, but must be
known a priori and stabilized carefully during every experiment.

The identification procedure for λ and κ (via α) has been written in MATLAB; no additional toolboxes
are needed. Fig. 5 represents an illustrative example of its performance for one of a large number of
tested specimens and temperature levels. The blue points correspond to the temperature records from
both sensors with the sensibility 0.1 ◦C (thus they are seemingly piecewise constants). The dashed
red curves correspond to the first rough estimate by (14); the linearity of the lower dashed curve in the
semilogaritmic scale follows from (14) directly; all temperature differences are non-positive because
of the reference temperature taken in the time τ (end of heating). The full red curves show the results
obtained from the iteration procedure coming from (15) and (16).

Repeating such calculations several for a set of reference interior oven temperatures, here for (ap-
proximately) {20, 100, 200, 300, 400, 500, 600, 700, 800} ◦C, we are able to obtain the temperature
dependence of λ and κ for (8), consequently to evaluate its preference for the utilization in a real
thermal container. Fig. 5 corresponds to the material chosen by [7] finally: both dependences of λ
and κ on θ are nearly linear for temperature values between 300 and 800 ◦C. Higher temperatures
than 800 ◦C cannot be recommended because of the real danger of unwanted structural changes both
in the tested specimens and in particular components of experimental equipment, especially due to
the applied heating wire.

5 More general optimization tools
Practical minimization of F by (13), with the aim of identification of λ and κ, including their de-
pendence on θ, relies on substantial physical and geometrical simplification here and the consequent
availability of some explicit computational formulae, based on (9), unlike the application of general
(e. g. finite element) numerical techniques on (8) with (3). However, in the design of thermal con-
tainers, even in the choice of materials for their performance, this can be seen as a very particular
optimization result only. Thus the development of a more general optimization tool, as robust, effec-
tive and inexpensive as possible, cannot be avoided. Most technical solutions declared as optimized
(including [7], referenced in the previous section), apply a simple selection from a finite (rather low)
number of variants only, in particular in such cases when both non-trivial experiments and computa-
tions are needed to receive separate values of rather complicated goal functions, generalizing F from
(13). incorporating various additional conditions thanks to penalty terms.

Some authors avoid the analysis of differential or integral equations at all, referring to some soft-
computing approaches, as genetic algorithms, neural networks, etc.; for much more information and
references corresponding to various problems of thermal transfer see [19] and [20]. Most modern
optimization algorithms usual some exact or approximate evaluations of gradients, needing many
evaluations of F (quasi-Newton iterations, conjugate gradient techniques, etc.), as analyzed in [21]
in all details. A promising (although not very quick) algorithm in such situation seems to be the
nonlinear simplex Nelder-Mead one, suggested in [22] originally, modified by [23] slightly, with 5
gradient-free steps: i) reflection, ii) expansion, iii) outside contraction, iv) inside contraction, all with
just one additional evaluation of F , and (as the last choice) v) shrink, with p additional evaluations of
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Fig. 4. Temperature dependence of λ and κ for the specimen with the following
chemical composition: dominating 96.0 % MgO, further 2.2 % CaO, 0.5 %

SiO2, 0.5 % Fe2O3, 0.2 % Al2O3, etc. (0.6 % total); by the material data sheet
of Slovmag a. s. Lubeník (Slovak Republic).

F where p refers to a number of optimized parameters. Unfortunately, the complete formal conver-
gence proof of this algorithm is contained in [23] only for p = 1 (where every direction can be seen
as a gradient one); the computer-supported 25-page proof for p = 2 in [24] does not allow any step ii)
and cannot be extended to p ∈ {3, 4, . . .} in an intuitive way. Some artificial examples of stagnation
or incorrect finishing of the algorithm can be overcome using certain adaptive parameters for steps i)–
v), various conditional restarting, simplex regularization or reshaping strategies; most computations
based on the MATLAB function fminsearch from the toolbox optimization and on similar software
tools do not produce (at least evidently) wrong results. Consequently a frame-based method of [25]
can be interpreted as a (rather complicated) always convergent variant of the Nelder-Mead algorithm.
Moreover, the recent development (with still open questions) tries to combine some advantages of
gradient and simplex algorithms, as sketched in [26].

Up to now, some partial results referenced in this section have been implemented to the design of
controlled heating for passive, low-energy and similar buildings, depending on a rather low number
p of optimized parameters, as documented by [27]. Their effective application to thermal containers
needs deeper connection to advanced planning of numerous experiments and is still in development.

6 Conclusion
The paper documents the significance of development of the wide range of optimization methods,
motivated by new development in civil engineering, compatible with increasing user comfort and
sustainable development. The introduction to direct and inverse problems is accompanied by an
instructive example of identification of material characteristics for thermal containers, as a part of
research priorities at FCE BUT. However, partial results generate still other problems, stimulating the
relevant research in the near future.
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public, National Sustainability Programme I).

1073



References

[1] FEIST, W.: Gestaltungsgrundlagen Passivhäuser. Das Beispiel (Darmstadt), 1999. (In German.)
[2] Directive 2010/31/EU of the European Parliament and of the Council on the Energy Perfor-

mance of Buildings. Official Journal of the European Union L 153/13, 2010.
[3] JAROŠOVÁ, P., and VALA, J.: New approaches to the thermal design of energy saving build-

ings. Advanced Materials Research 1126 (2015), 174–180.
[4] NAYAK, J. K., and SUKHATME, S. P.: Principles of Thermal Collection and Storage. Tata

McGraw Hill, 2008.
[5] FERONE, C., COLANGELO, F., FRATTINI, D., ROVIELLO, G., CIOFFI, R., and DI MAG-

GIO, R.: Finite element method modeling of sensible heat thermal energy storage with innova-
tive concretes and comparative analysis with literature benchmarks. Energies 7 (2014), 5291–
5316.

[6] KUZNIK, F., DAVID, D., JOHANNES, K., and ROUX, J.-J.: A review on phase change mate-
rials integrated in building walls. Renewable and Sustainable Energy Reviews 15 (2011), 379–
391.
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