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Abstract. This paper compares the quality of standardly used ON-LINE identification 

algorithms like directional forgetting and regularized exponential forgetting with the 

hybrid algorithm of exponential forgetting with an alternative covariance matrix. It 

points also to the behavior of selected algorithms in different deployment conditions 

and different run times. Particularly interesting is the long-run deployment, which 

correlates with use in industry. Based on the results obtained, decisions will be taken 

about the suitability of the hybrid regularized exponential forgetting algorithm with an 

alternative covariance matrix for selected industrial deployment scenarios. 
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1 Introduction 

The current character of real systems and their subsequent identification in practice clearly 

demonstrates the variability of their parameters [1,2,3]. This negative effect, in conjunction 

with adaptive control, prevents unlimited monitoring of the changes of parameters in time. 

The direct consequence of these negative effects is the impossibility of applying the standard 

recursive least squares method for estimating the linear regression model parameters. The 

reason is that simple, constant supply of new information causes, among other things, the 

system gain of the algorithm to converge to zero. This results in the destabilization of the 

numerical method for estimating the parameters, which is the "Blow up" problem [4]. 

The solution to this problem could be achieved by forgetting surplus information. The first 

techniques based on this principle include Exponential Forgetting (EF), Directional Forgetting 

(DF) (the basic idea was to reduce the concentration of the maximal reliability function or the 

,,a posteriori” density function), or subsequent modifications based on different methods of 
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regularization or stabilization of the covariance matrix. Regularized Exponential Forgetting 

(REF) or Stabilized Linear Forgetting (SLF) methods are examples of the latter. 

Another possible solution to the problem of destabilization can be the use of new procedures 

using the preservation of ,,a priori” information about the system in the form of an alternative 

covariance matrix (ACM). The classic REF algorithm can be expanded with ACM to create 

the REFACM algorithm. Another developmental step is to combine the benefits of the REF 

and REFACM algorithms into a single block in the form of the Hybrid Regularized 

Exponential Forgetting Algorithm with Alternative Covariance Matrix (HREFACM). Quality 

aspects of our newly developed HREFACM algorithm is the subject of this article, which 

focuses on assessing its quality under various operating conditions. 

2 Problem formulation 

Let us consider a stochastic system, in which the observations are obtained at discrete time 

points k = 1,2 ....,. The directly controlled input uk and the indirectly controlled output yk (also 

may be multidimensional), can be arranged in the data pairs dk = (uk, yk). The set of all 

observer data about the system up to time t is determined by Dt = (d1, d2, .... dt). The 

dependence of the new data pair (uk, yk) on the previous observations Dk-1, can be expressed 

by a conditional probability density function (p.d.f.) with the following structure: 

     111 ,,,,   kkkkkkkkkk DupDuypDuyp  (1) 

The incomplete knowledge of the system is expressed by the vector of unknowns, which 

consists of time-varying parameters k. Note that the input generator is described by the 

second part of this equation, and the first part characterizes the system. 

The Bayesian approach: 

If an unknown parameter, described by , is interpreted as a random variable, then the 

uncertainties , assuming the knowledge of the observed data Dt, is naturally expressed by the 

,,a posteriori” conditional probability density function (p.d.f.) p(/Dt) conditionally dependent 

on Dt. This is generally determined by the Bayes theorem. If the input generator does not 

produce any new information compared to the information obtained from the observed data 

p(uk/Dk-1, k) = p(uk/Dk-1) k = 1,....t. The Bayes theorem is simplified [5]: 

     
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An important special case in the first part of the equation (1) occurs when the output yk 

depends on the previous data uk, Dk-1 over the known finite-dimensional vector function 

(uk, Dk-1) = k. This occurs in the following case:
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Based on the supposition that the ,,a priori” (p.d.f.) is normal  then it can be easily 

deduced that the ,,a posteriori” (p.d.f.) p(/Dt) produced by Bayes rule (2) is normal 

with recursively modified statistics: 

(4) 

where expresses the prediction error. Now it can be seen that recursive 

relations (4) are identical to the famous recursive least square algorithm. 

3 Universal recursive forgetting algorithm 

Most methods designed for time-varying cases can be expressed as modifications of least 

squares recursive (LSR), typically with a method implementation of forgetting old data, to 

prevent gain of the algorithm to converge to zero. Each method can be expressed as a special 

case of the following universal forgetting algorithm [6]: 

Measured data contribution: 

(5) 

Time contribution: 

(6) 

The contribution from the measured data is not affected by the parameters changed by the 

time. The time representation (6) represents the change of the parameter vector between two 

measurements. Time contribution equations can be derived analytically, if there is an explicit 

model of parameter changes. Such a case is extremely unsuitable, so an heuristic procedure 

must be used. It is usually assumed that  is approximately constant in the time horizon N >> 

0, and then an ,,ad hoc” method of forgetting is added, through the implementation of the 

forgetting operator F{}. 

The well-known method of exponential forgetting leads to this following contribution to the 

change of the covariance matrix: 
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The EF method was very widespread, achieving good results in a number of cases. However, 

if the data are not sufficiently informative for a long period of time (the regression vector 

sequence insufficiently builds up some parts of the parameter space), the corresponding 
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matrix P eigenvalues will grow above all boundaries [7]. One way to remove a blow-up 

problem is to keep Pk+1/k eigenvalues on a pre-specified interval [0, 1] see [8]. The following 

time contribution is used: 
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(8) 

where (P1/0 = 1I) and I is a ,,ones” matrix of this corresponding dimensions, (0) and (0). 

Modification of the covariance matrix (8) was introduced to negate the convergence of the 

eigenvalues Pk+1/k to zero. Generally, the Pk+1/k matrix should be selected as: 

IPP
kkkk


1

(9) 

In this case, it is limited from the bottom and from the top. Then the exponential convergence 

of identification algorithms is guaranteed [8]. This can be compared with the time 

contribution for (EF) [9], in which old information are suppressed evenly in the parameter 

space. Kulhavý and Kárny [6] have designed an algorithm that forbids only part of the 

parameter space affected by the last data contribution. In this case, the time contribution is 

given as follows: 

 























kkkk

kkkkkkkk
P

kkPP
1

11

1

1
11,  (10) 

For 01,   kkkk P . In general, it can be stated that in the recursive calculation of the 

covariance matrix there must be avoided the tending to lose tracking on one hand, and on the 

other   hand the uncontrollable increase of the Pk+1/k eigenvalues. 

4 REF and SLF techniques 

Assuming there is no explicit model of the process parameter changes the ,,a prioral” 

information can be quantified by introducing an alternative p.d.f. p
*
(k+1/Dk). The problem is

then the construction of the p.d.f. p(k+1/Dk) based on two hypotheses, which are described by 

the ,,a posteriori” p.d.f. p(k/Dk)  (this is the case without any parameter changes) and the 

alternative p.d.f. p
*
(k+1/Dk) (this is the case where the parameters change most significantly).

For simplification we use p0(), p1() and p
*
() for the ,,a posteriori”, alternative and resulting

p.d.f. as follows:

Kulhavý and Kraus [6] formed the task of selecting p
*,
 assuming the recognition of p0 and p1

as a Bayes theorem decision-making problem. In the following we recall the results of their 

solution. After adding the probabilities  and 1- to the hypothesis p0 and p1. Considering p0, 

p1 belonging to the class of normal divisions N that can be expressed: 
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
(11) 

the parameters and P determine the mean value and covariance of the p.d.f. The results are

shown below (considering

EF: 

(12) 

LF: 

(13) 

Consider a model of a system with time-variable parameters k (3). 

Adding a standard LSM algorithm (5) with exponential or linear looping (12), (13) allows the 

changes of parameters to be monitored. The alternative mean value is set equal to a-posteriori 

kk
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kk

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
1

and the alternative covariance matrix is set equal to a-priori covariance 

QPPalt

kk


 0,11
. 

Using this selection we are able to apply a general recursive forgetting algorithm with the 

following form of the forgetting operator: 

     111 1,
  QPQPF

kkkk
 (14) 

which creates a harmonious mean value for REF and: 

   QPQPF
kkkk

  1, (15) 

creating an algorithmic mean value for SLF. In both cases, the a-priori covariance matrix Q is 

not forgotten and is repeatedly taken into account in each step of the recursive identification 

of k. 

5 Notes on Numerical Processing 

The data contribution in the generalized recursive forgetting algorithm is given (5). Using a 

well- known lemma on inversion of matrix, considering the covariance matrix in L-D 

factorizations the form may be produced: 
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Instead of adjusting the covariance matrix as a whole, its expression can be modified in the 

factorized form to ensure its positive definition. The second element of the forgetting 
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algorithm is its time post. The application of the regulation of the covariance matrix by an 

alternative matrix causes an increase in calculation requirements. In both cases (12), (13) a 

weighted sum of two fully ranked matrices  P P0

1

1

1 ,  or P0, P1. This problem was solved by 

using a dyadic reduction, which is the core tool used for solving this type of tasks. 

The dyadic reduction can be used to solve the weighted summation of two full matrices in 

factorized form. The equation (13) represents the time contribution to the change of the 

covariance matrix: 
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ioioi
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 (17) 

L0,i (L1,i) are line vectors applied as the i-th line of the lower triangle of the triangular matrix 

L0(L1). The important factor is that the diagonal elements of both triangular matrices equal 

one, considering the dyadic reduction algorithm assumes that the element f0 = 1 is rightly 

placed in the reducing line f. A closer look at algorithm performing a weighted sum of two 

covariance matrices can be found in the factorized expression [6]. 

6 Augmenting REF with ACM 

The involved REF augmentation considers addition and keeping the initial information in the 

Alternative Covariance Matrix (ACM) form as shown in [8]. The augmentation is based on 

the modified Dyadic reduction algorithm. The main difference is that instead of adding a-

priori covariance matrix Q, ACM is computed at each step. ACM stabilizes the evolution of 

matrix P(0) after the recursive update. This operation is necessary for the REF algorithms to 

be augmented by the stabilization component in the ACM form. The aforementioned 

stabilization component prevents the destabilization of the original algorithms in long running 

applications when slow time changes are to be expected in the observed parameters in relation 

to the sampling period. The modified REF algorithm augmented with ACM is to be called 

REFACM.  

A hybrid algorithm combines the advantages of both previously presented algorithms. The 

application of the REF algorithm is used in short time simulations, while the advantages of 

the REFACM algorithm is utilized in long time simulations, emulating the long-run operation 

of time variant dynamic systems. For this purpose, we created a new block module in Matlab 

Simulink. When the quality of REFACM is dominating over REF, as shown in Fig. 1., the 

block module switches from the REF algorithm to the REFACM. The REF algorithm runs at 

the beginning and after the result samples of PE and IS are better than REF in several 

successive steps in a row the algorithm is switched to REFACM. The resulting hybrid 

algorithm has been named HREFACM. The choice between the REFACM and REF 

algorithm is based on the mixing ratio of integral sum of prediction error (PE) and the integral 

sum of the Euclidian norm of parameters (outputs) error (IS).  
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7 Simulational algorithm verification methodology 

Model number one and model number two have a different approach to input excitation 

(input signal generator A and B). The models were created for the purpose of verification of 

the properties of the algorithms. All the algorithms were subjects of the same test with 

identical length using the two featured models. The test compared the quality of the 

algorithms by the observation of time variant parameters of a dynamic DF.  

All the results were evaluated and analyzed using a table where algorithm quality was shown 

numerically through parameters IS and PE. 

Description of models no. 1 and no. 2 

Model number one is a second order model considering external disturbance v(t): 

 2
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
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The values of constant parameters equal: a2 = -0.9, b0 = 0.5, b1 = -0.25, b2 = 0.1, d1 = 0.8, d2 

= 0.2, σ = 0.1. 

In the first half of the simulation the time variant parameter was set to a(1) = 0.98. This value 

was constant in the first half of the n simulation steps. Afterwards, at the time t = n / 2 the 

parameter value was changed to a(1) = − 0.98. The outside disturbance was simulated as a 

square signal periodically changing its value from +1 to −1 every hundred simulation steps. 

The main difficulty of the identification was the rarely occurring disturbances, which 

contained minimal information about the parameter d(i). 

For the needs of the simulation, two input signal generators were assumed: 

 Input signal generator A: discrete white noise generator

 Input signal generator B: the input signal has been generated using the following

equation: kkk uuu 2.08.0 *

1

*   , where u*k is normally distributed white noise and u*k-1 is 

the previous input value. For model no. 2. only one change has been realized in 

comparison to model no. 1. This was carried out by altering the time variant parameter 

a(1,k) = 0.98 cos(2π k/250). In this case, two different input generators were 

considered as well:  

o Input signal generator A: discrete white noise generator

o Input signal generator B: the input signal has been generated similarly to

model no 1., where u(k) has been only chosen from the interval u(k) ~ (0.5, 1).

All the algorithms were subject to the same test of the identical length, using the featured 

model. All the results were graphically evaluated and analyzed in a table in which the 

algorithm quality was shown numerically through IS and PE. The model for verification was 

chosen from [6].  
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8  Verification – MATLAB Simulink 

A universal user interface was created along with a set of S-Function libraries used for the 

verification of the simulation. The interface allows the user to select input data, simulated 

model and the observed algorithm. Output of the discussed simulations is a graphic 

representation of the observed parameters along with a data file containing the results for the 

analysis. Integral sum (IS) of the Euclidian norm of parameter error and prediction error PE 

has been shown, which is the amount exceeded by the interval ±3σ2. The simulation 

experiments will be marked by the character pair XY, where X is the number of the utilized 

model (no. 1 or no. 2) and Y represents the generator utilized (A, respective B). 

Fig. 1. HREFACM setup for benchmarks with algorithm in Matlab Simulink environment. 

9 Evaluation of simulation results 

The result section contains all the results in the form of a table. Tables (1) to (5) include 

detailed description and evaluation of the algorithm behavior during different simulations of 

duration n = 1 200, 6 000, 12 000, 60 000 and 120 000. The result confirms HREFACM 

algorithm quality in comparison to REF or REFACM. The results in Table (2); clearly state 

that at the simulation length n = 12 000 steps the properties of long lasting runs are already 

appearing., which in the case 1A achieved better results than REF. The data introduced in 

Table (5) confirm the HREFACM algorithm quality. The PF algorithm achieves excellent 

results also. It is clear, that using ACM as if a constraint has been enforced on parameter 

trending, which also implies the improvement of IS parameters in comparison to the results 

achieved by REF. The convergence of the REF covariance matrix is faster and finite in 

contrast to HREFACM, where the convergence is slower and the addition of excited ACM 

cannot be finite. The obtained  simulation results and HREFACM algorithm behavior at 6 000 

and 120 000 simulation steps show that as the running length increases the quality improves, 

in contrast to REF. The comparison is shown in Figure 1. The weighting factor λ used for the 

calculation of the quality of HREFACM algorithms equals λ=0.8. 
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1 200 steps 1A 1B 2A 2B 

SF 
IS 409,7 390,7 689,6 805,7 

PE 151 70 326 143 

REF 
IS 68,5 72,1 168,7 258,2 

PE 16 11 38 26 

REFACM 
IS 103,9 101,1 339,6 474,1 

PE 29 36 110 65 

HREFACM 
IS 68,5 72,1 168,7 258,2 

PE 16 11 38 26 

Tab.1. IS and PE values of the observed algorithms during 1 200 simulation steps. 

6 000 steps 1A 1B 2A 2B 

SF 
IS 356,6 957,3 3499,4 4016,0 

PE 130 131 1723 717 

REF 
IS 118,3 120,3 740,9 1336,7 

PE 18 12 174 103 

REFACM 
IS 127,4 177,8 963,8 1985,1 

PE 27 34 239 166 

HREFACM 
IS 127,1 176,4 961,7 1971,4 

PE 26 31 228 151 

Tab.2. IS and PE values of the observed algorithms during 6 000 simulation steps. 

12 000 steps 1A 1B 2A 2B 

SF 
IS 645,7 1604,6 6701,0 7474,5 

PE 253 214 3892 1488 

REF 
IS 168,9 253,9 1457,2 2525,3 

PE 11 12 303 124 

REFACM 
IS 162,9 296,3 1844,9 4507,3 

PE 19 24 523 317 

HREFACM 
IS 159,4 284,7 1784,9 4321,2 

PE 19 28 634 421 

Tab.3. IS and PE values of the observed algorithms during 12 000 simulation steps. 

60 000 steps 1A 1B 2A 2B 

SF 
IS 3734,8 8923,5 34241,6 33456,4 

PE 217 198 2002 745 

REF 
IS 512,5 2814,3 4403,2 2747,6 

PE 17 12 402 241 

REFACM 
IS 410,2 1241,2 3608,3 12607,4 

PE 21 31 654 439 

HREFACM 
IS 159,4 284,7 1364,7 4321,2 

PE 19 28 634 421 

Tab.4. IS and PE values of the observed algorithms during 60 000 simulation steps. 
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120 000 steps  1A 1B 2A 2B 

SF 
IS 7234,8 17823,5 68601,8 76824,3 

PE 423 398 3892 1488 

REF 
IS 1035,4 3419,5 8976,2 33848,8 

PE 17 12 402 241 

REFACM 
IS 880,8 2914,3 1844,9 4507,3 

PE 51 29 654 439 

HREFACM 
IS 842,2 2914,3 1784,9 4321,2 

PE 46 26 634 421 

 

Tab.5. IS and PE values of the observed algorithms during 120 000 simulation steps. 

 

Conclusion 

 

Based on our verified simulations using our universally developed test environment in 

MATLAB, we have come to the following conclusions. For short runtimes of the 

identification algorithm, classical methods like SF and REF are sufficient. The advantages of 

the tested HREFACM algorithm will only occur with long-term algorithms over 60,000 steps.  

Beyond that number of steps it is then advantageous to use it, because its hybrid properties are 

well adapted to the initial rise phase where it behaves as an REF algorithm. After that, in the 

long-term use it will again show its qualities when operating in the mode as the REFACM 

algorithm. Thus, the proposed hybrid algorithm combines the benefits of both algorithms and 

in the end is versatile and therefore suitable for industrial deployment. 
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