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Abstract. This paper is focused on the possible methodologies for comparing two time 
series by estimating the probability that both time series will increase or decrease (of 
course in probability) in the same time.  
It can be considered as the specific measure of dependence (more precisely 
concordance) between two random variables with non-parametric approach. Then the 
problem may arise with a statistical inference. The main idea of this approach is based 
on the transformation of observed data set into increasing and decreasing movement and 
then the Markov model (Markov chain) of transitions (increasing-increasing, 
increasing-decreasing, decreasing-increasing, decreasing-decreasing) is used with the 
removal of the assumption of independence.    
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1 Introduction 

A frequent financial problem in the world is the assessment of how the financial assets 
denominated in some currency will behave in the currencies of that currency to the accounting 
currency (exchange rate loss or yield). This can be assessed on the base of knowledge of the set 
of past values and the assumption that there will be no significant change in the used probability 
model of the behaviour of such time series.  
In general, it is a measure of the "power" of keeping or not keeping tendencies (monotony, 
growth, decrease) in two time series1.  

2 Basic terms 

The presented text is motivated by the concept of positive and quadrant dependence (e.g. [1] 
and others). The bond strength between two time series can be measured in many ways. One of 
them can be preserving (or not preserving) the probability of monotone relationship. This is the 

1 Such theory can be done for more time series. There will be work only with pairs of time series. 
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probability that the values of one time series are increasing and the values of the second time 
series are also increasing and similarly for consistent decreases (analytically of course for 
discordance behaviour).  
Next, here will be also work with time series whose values are continuous random variables 
(such a probability model, in many cases, does not distort reality). It means the following cases, 
which may occur: 
 

Series A increases increases decreases decreases 
Series B increases decreases increases decreases 
Status code 1,1 1,0 0,1 0,0 
Numeric code 3 2 1 0 

Tab. 1. Possible time series states. 
 
Of course, increase or decrease must be related to some, non-empty, time interval or to compare 
the value at one time point with the value at another time point. Here, time series are limited to 
time series with a discrete time axis and for comparison at two time points. Therefore, for some 
given 𝜏 the considered states are written in the following table. 
 
Series A 𝑥𝐴(𝑡) > 𝑥𝐴(𝑡 − 𝜏) 𝑥𝐴(𝑡) > 𝑥𝐴(𝑡 − 𝜏) 𝑥𝐴(𝑡) < 𝑥𝐴(𝑡 − 𝜏) 𝑥𝐴(𝑡) < 𝑥𝐴(𝑡 − 𝜏) 

Series B 𝑥𝐵(𝑡) > 𝑥𝐵(𝑡 − 𝜏) 𝑥𝐵(𝑡) < 𝑥𝐵(𝑡 − 𝜏) 𝑥𝐵(𝑡) > 𝑥𝐵(𝑡 − 𝜏) 𝑥𝐵(𝑡) < 𝑥𝐵(𝑡 − 𝜏) 
Status code 1,1 1,0 0,1 0,0 
Numeric code 3 2 1 0 

Tab. 2. Possible comparison between two time series. 
 
Thus, each realization of a pair of time series (for given 𝜏 and at each time 𝑡) is assigned its 
state. For the degree of consistency, the concordance rate, of these time series will then be 
considered the probability that there will be state (1,1) or (0,0) anytime. From this, it is obvious 
that there will be work with pairs of time series, for which this probability does not depend 
(functionally) on time 𝑡 (but it may and it will be depend on time shift 𝜏).  

It is formally possible to write the relationship under the following assumptions: 

 𝑐𝑜𝑛𝑐𝑟(𝑥𝐴, 𝑥𝐵; 𝜏) = 𝑃([1,1]|𝜏 ∪ [0,0]|𝜏) = 𝑃([1,1]|𝜏) + 𝑃([0,0]|𝜏)
≡ 𝑃([3]|𝜏) + 𝑃([0]|𝜏). (2.1)  

 

Obviously:    

 

𝑐𝑜𝑛𝑐𝑟(𝑥𝐴, 𝑥𝐵; 𝜏) = 𝑐𝑜𝑛𝑐𝑟(𝑥𝐵, 𝑥𝐴; 𝜏),  
0 ≤ 𝑐𝑜𝑛𝑐𝑟(𝑥𝐴, 𝑥𝐵; 𝜏) ≤ 1,  
𝑥𝐵(𝑡) = ℎ(𝑥𝐴(𝑡)) ⇒ 𝑐𝑜𝑛𝑐𝑟(𝑥𝐴, 𝑥𝐵; 𝜏) = 0,  ℎ(𝑥) is strictly decreasing,  
𝑐𝑜𝑛𝑐𝑟(𝑥, 𝑥∗; 𝜏) = 1, where 𝑥∗ is a copy of 𝑥. 

(2.2)  

       

In analogy with Kendal tau [2] a coefficient of concordance can be introduced as a difference 
of probability matching and probability discrepancy.  

 

 𝑐𝑜𝑛𝑐𝑐(𝑥𝐴, 𝑥𝐵; 𝜏) = 𝑃([1,1]|τ ∪ [0,0]|τ) − 𝑃([1,0]|τ ∪ [0,1]|τ)  
= 2𝑐𝑜𝑛𝑐𝑟(𝑥𝐴, 𝑥𝐵; 𝜏) − 1. (2.3)  
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Obviously: 

 

−1 ≤ 𝑐𝑜𝑛𝑐𝑐(𝑥𝐴, 𝑥𝐵; 𝜏) ≤ +1,  
𝑐𝑜𝑛𝑐𝑐(𝑥𝐴, 𝑥𝐵; 𝜏) = 0, if the decreases or increases in both series are independent, 
𝑐𝑜𝑛𝑐𝑐(𝑥𝐴, 𝑥𝐵; 𝜏) = −1, if increases in one series implies decreases in second series  

𝑐𝑜𝑛𝑐𝑐(𝑥𝐴, 𝑥𝐵; 𝜏) = +1, if increases in one series implies increases in second series. 

(2.4)  

 

From theory's point of view, this introduction does not bring anything new. However, it is clear. 
If the coefficient is negative, the probability of discrepancy behaviour dominates the probability 
of the same. If the coefficient is positive, the probability of the same behaviour dominates over 
the probability of discrepancy. If it is not possible to make decision significantly from the 
behaviour of one series to the behaviour of the second series, it is zero or near zero. 

 
3 Statistical inference  

 
Under these assumptions, the state event are realized by a pair of time series in any state, at a 
given time (and at a given time shift), and equally distributed. However, the assumption of 
independence of observations will not satisfied for most real (pair) time series (this is needed if 
we want to use the approaches of random sample, i.i.d.). The pair of time series will contain a 
greater or lesser amount of memory (= probability dependency over time).  
Therefore, we need to use some model of time dependence. This may be a Markov chain model 
(specifically for ordinary pairs of time series without other functional relationships, 
homogeneous and of course regular [2]). This can replace the assumption of the independence 
of observing states by assuming the independence of observed transitions from one state to 
another. 
  

For this Markov chain model hold 

 𝑝𝑇(𝑡 + 1) = 𝑝𝑇(𝑡)𝑃, (3.1)  

 

where 𝑝(𝑡) is the probability vector of the occurrence of Markov chain in a given state, and 𝑃 
is the probability matrix of transition from state to state, obviously 𝑑𝑖𝑚 𝑝(𝑡) = 𝑘 and 𝑑𝑖𝑚 𝑃 =
𝑘x 𝑘, in our case 𝑘 = 4. 

 

The elements of the 𝑃 - matrix can be (pointed) estimated by classical frequencies. So 𝑃(𝑖, 𝑗)  =
 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖), i.e.: 

 𝑃̂(𝑖, 𝑗) =
𝑛(𝑖, 𝑗)

𝑛(𝑖)
, (3.2)  

 
where 𝑛(𝑖, 𝑗) is the number of observed transitions from state 𝑖 to state 𝑗 and 𝑛(𝑖) = ∑ 𝑛(𝑖, 𝑙)𝑘

𝑙=1 . 
 
Against common tasks, here 𝑃̂(𝑖, 𝑗) is not a proportion of random variable of the number of 
observations and a fixed range of random sample. This is the proportion of two random 
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variables. This situation complicates the situation around this estimate. Nevertheless, such an 
estimate is a consistent2 estimate of 𝑃(𝑖, 𝑗), which is sufficient for our purposes. 
 
Another problem, in estimating, may be some specific properties of the matrix 𝑃. Here, from 
the declared use, is 𝑃(𝑖, 𝑗) > 0. It means, that the probability of being in any state "in one step" 
can get into any other step or remain is nonzero. This would not be guaranteed by the above 
mentioned frequency approach (especially with a small number of observations = zero 
frequency problem). Because of this situation, it is used here a Bayesian approach assuming a 
uniform a priori distribution (e.g. [3]), where in this case is 𝑘 = 4: 

 𝑃̂(𝑖, 𝑗) =
𝑛(𝑖, 𝑗) + 1

𝑛(𝑖) + 𝑘
=

𝑛(𝑖, 𝑗) + 1

𝑛(𝑖) + 4
; 𝑖, 𝑗 = 0,1,2,3. (3.3)  

 
This is a consistent estimate again.  

It is true (for regular strings) for any vector 𝑞 of distribution of probability occurrences in the 
state of chain lim

𝑛→∞
𝑞𝑇𝑃𝑛 = 𝑝𝑇, where 𝑝 is the single probability distribution vector in the state 

of chain with 𝑝𝑇 = 𝑝𝑇𝑃. It is only one stationary distribution vector 𝑝𝑠𝑡𝑎𝑐 = 𝑝.  

 

Calculation in this way could be more complicated, and this is an important fact that stationary 
probabilities are the only ones for the regular chain. Therefore, another way of determining 
stationary probabilities (least squares method) is here possible: 

 𝑝𝑇 = 𝑝𝑇𝑃 ⇒ 𝑝𝑇(𝑃 − 𝑰) = 𝟎𝑻, (3.4)  

 

where 𝑰 is an identical matrix of the same dimensions as 𝑃 and 𝟎 is a zero vector of the same 
size as 𝑝. 

 

2 Proof can be done with using the characteristics of multinomial distribution. 
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4 Obtained results  

 
4.1 Table results 

 
Exchanges rates of different currencies in one source currency 

Data set is daily foreign exchange rates announced by the CNB for the period 3. 2. 2011 - 6. 4. 
2017, www.cnb.cz3 . 𝜏 = 5 time shift is 5 quotation days.  
 
CZK per EUR and CZK per USD 

 

 

It is obvious that dominate the probability of staying in the state. 

 

With stationary probabilities, we can observe the dominance of 
probabilities of occurrence in concordant states. The probability 
of consistent behaviour is about 2/3. 

 

Estimates of the mean times of stay in the state again prefer 
concordant states. 

 

These values indicate that both time series tend more to 
conservative behaviour (in terms of mutual relationship). 

If we make some qualitative statements about the long-term behaviour of the CZK against 
EUR and USD, there is no need to distinguish between these two target currencies. 

Tab. 3. CZK per EUR and CZK per USD.  
 

3 The revaluation (or devaluation) here means appreciating the CZK against the currency in which the 
time series is. 

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 0,727 0,093 0,105 0,075

0,1 1 0,191 0,550 0,028 0,231

1,0 2 0,251 0,045 0,503 0,201

1,1 3 0,068 0,130 0,094 0,708

Estimation of transition matrix,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)

p(0,0)= p(0)= 0,343

p(0,1)= p(1)= 0,181

p(1,0)= p(2)= 0,145

p(1,1)= p(3)= 0,331

Suma = 1,000

67,38%

0,348

Concordance rate

Concordance coeficient

Stationary probablities

t(0,0)= t(0)= 3,67

t(0,1)= t(1)= 2,22

t(1,0)= t(2)= 2,01

t(1,1)= t(3)= 3,43

Mean recurrence (stay) time

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 2,92 10,58 11,47 8,42

0,1 1 6,96 5,52 13,26 6,22

1,0 2 6,06 11,18 6,89 6,83

1,1 3 8,48 9,48 12,01 3,02

Matrix of mean 

transition times,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)
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CZK per CNY and CZK per JPY 

 

 

It is obvious that dominate the probability of staying in the state 
too. 

 

With stationary probabilities, we can observe the dominance of 
probabilities of occurrence in concordant states. The probability 
of consistent behaviour is about 73 %. 

 

Estimates of the mean times of stay in the state again prefer 
concordant states, especially 𝑡(0,0). 

 

Both time series tend to concordant states.  

There are time series of foreign exchange currencies from partners from a geographically 
close environment, so both behave (in terms of changes) significantly similarly. 

Tab. 4. CZK per CNY and CZK per JPY. 
  

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 0,762 0,088 0,063 0,087

0,1 1 0,228 0,534 0,016 0,222

1,0 2 0,184 0,029 0,505 0,283

1,1 3 0,082 0,089 0,094 0,735

Estimation of transition matrix,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)

t(0,0)= t(0)= 4,20

t(0,1)= t(1)= 2,15

t(1,0)= t(2)= 2,02

t(1,1)= t(3)= 3,77

Mean recurrence (stay) time

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 2,77 12,41 15,31 7,89

0,1 1 6,46 6,82 16,29 6,19

1,0 2 7,25 13,76 8,23 5,31

1,1 3 8,52 12,49 13,96 2,70

Matrix of mean 

transition times,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)
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CZK per EUR and CZK per DKK 

 

 

Significant dominance here have the probabilities of staying in 
concordant states. 

 

With stationary probabilities, we can observe the dominance of 
probabilities of occurrence in concordant states. The probability 
of consistent behaviour is very high. There is possible to say, that 
it is about 95 %. 

 

Estimates of the mean times of stay in the state again prefer 
concordant states. Here is again significant dominance of 
concordant states. 

 

Both time series tend to concordant states. By the biasing from 
the state, there is a much faster movement to a concordant rather 
than unconcordant state. 

It is clear, that the CZK per DKK exchange rate is set in strong relationship to the CZK per 
EUR exchange rate (mediated through the market or directly by the method of 
determination). 

Tab. 5. CZK per EUR and CZK per DKK.  

  

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 0,783 0,020 0,025 0,172

0,1 1 0,316 0,316 0,013 0,354

1,0 2 0,424 0,015 0,182 0,379

1,1 3 0,192 0,024 0,018 0,766

Estimation of transition matrix,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)

p(0,0)= p(0)= 0,493

p(0,1)= p(1)= 0,031

p(1,0)= p(2)= 0,026

p(1,1)= p(3)= 0,450

Suma = 1,000

94,38%

0,888

Concordance rate

Concordance coeficient

Stationary probablities

t(0,0)= t(0)= 4,61

t(0,1)= t(1)= 1,46

t(1,0)= t(2)= 1,22

t(1,1)= t(3)= 4,27

Mean recurrence (stay) time

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 2,03 46,54 46,12 5,46

0,1 1 4,11 32,63 47,15 4,06

1,0 2 3,60 46,66 39,06 4,13

1,1 3 4,97 46,03 46,94 2,22

Matrix of mean 

transition times,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)
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CZK per EUR and CZK per PLN 

 

 

Here, the probabilities of staying in position are greatly 
dominated. 

 

Probabilities of occurrence in individual states are practically 
uniformly distributed.  

 

In terms of mean times of stay in the state, the individual states 
are similar. 

 

Both time series tend to concordant states. Deviating from the 
state is a much faster movement to a concordant rather than 
unconcerned state. 

Here are listed (in some ways) the opposite exchange rates. From the value of one exchange 
rate it is not possible to make “correct” conclusions about the second exchange rate (in terms 
of non-quantified changes, only increases and decreases). 

Tab. 6. CZK per EUR and CZK per PLN.  
  

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 0,676 0,128 0,140 0,056

0,1 1 0,165 0,611 0,034 0,190

1,0 2 0,208 0,044 0,580 0,168

1,1 3 0,072 0,137 0,143 0,648

Estimation of transition matrix,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)

p(0,0)= p(0)= 0,305

p(0,1)= p(1)= 0,219

p(1,0)= p(2)= 0,210

p(1,1)= p(3)= 0,266

Suma = 1,000

57,16%

0,143

Concordance rate

Concordance coeficient

Stationary probablities

t(0,0)= t(0)= 3,09

t(0,1)= t(1)= 2,57

t(1,0)= t(2)= 2,38

t(1,1)= t(3)= 2,84

Mean recurrence (stay) time

0,0 0,1 1,0 1,1

0 1 2 3

0,0 0 3,27 9,17 8,79 9,27

0,1 1 7,15 4,58 10,58 7,18

1,0 2 6,42 10,51 4,76 7,73

1,1 3 8,24 8,98 8,75 3,76

Matrix of mean 

transition times,                                         

to state (column)

F
ro

m
 s

ta
te

 (
ro

w
)
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4.2 Graphical results 

 
The graphical results of the previous prepositions are shown in the following figures. The 
figures on the left side show clearly the relative frequencies, i.e. point estimates of stationary 
probabilities of individual states (status codes). Conversely, the figures on the right side the 
correlation between the considered exchange rates. 
 

 
Fig. 1. Relative frequency and correlation among CZK, EUR and USD.  

 

 
Fig. 2. Relative frequency and correlation among CZK, CNY and JPY.  

 

 
Fig. 3. Relative frequency and correlation among CZK, EUR and DKK.  
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Fig. 4. Relative frequency and correlation among CZK, EUR and PLN.  

 

Another problem in this approach may be the shift time 𝜏. This is how the effect of the results 
of the shift time is affected. I.e. there is considered the question, how much time shift affect 
obtained results. The results are different for each observed pair of exchange rates. For better 
imagination, here is the first case i.e. CZK per EUR and CZK per USD. 

 

 

Fig. 5. Effect of time shift on concordance rates. 
 
There is used a 5-day time shift for clarity on the base of observed simulations and for practical 
use. For the meaningfulness of these approaches, the maximum number of shifting days in 
simulations was limited to 30. 

 

5 Conclusion  

 
Computational modelling was done for daily published courses: 

Source Number of Exchange series Source currency From the period to 
ČNB 28 CZK 2. 1. 2007 6. 4. 2017 

Tab. 7. Source data set. 
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Concordance can be described as "probability matching (qualitative)" practically (in the interval 
of 1 - 30 quoted days) independent of the "distance" of the date being compared. It appears that 
the concept of concordance between two time series is an appropriate tool for qualitative 
classification of the relationship between two time series. 

Here are used 4 estimates of concordance rate and other statistics of all possibilities in this paper 
based on source data set from CNB. The first two are based on significant trading currencies 
(EUR, USD, CNY, JPY) and the other two are based on interesting results among European 
states (DKK, PLN). That means a pair of currencies with a high coefficient of concordance and 
a low coefficient of concordance. 
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