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FORCED DUFFING EQUATION WITH
A NON-STRICTLY MONOTONIC POTENTIAL
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Abstract. This article is devoted to study the existence of a solution to the periodic nonlinear
second order ordinary differential equation with damping

u(x) + cu'(z) + g(z,u) = f(x € 10,717,

)
u(0) = u(T), v'(0) u()

where ¢ € R, g is a Carathéodory function, f € L'([0,7T7]), a quotient @ lies between 0

2 - . . . .
and G + (%)2 and a potential is a non-strictly monotonic function. The technique we use are
variational method and critical point theorem.
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1 Introduction

The aim of this article is to provide new existence results for the nonlinear periodic boundary problem

u'(z) +cu(x) + g(x,u) = f(z), z€]0,1],
u(0) = u(T), w'(0) = v'(T),

(1.1)

where ¢ € R, the nonlinearity g: [0,7] x R — R is Carathéodory’s function, f € L'([0,T]).

An equation of this form describes for example a spring—mass system with a damper in parallel; or
the charge on the capacitor in a circuit containing resistance, capacitance, and inductance.

In papers [7], [14] authors used topological degree arguments and supposed that v(z) < 1|1m inf | g(@:5) |

< lim sup]g("””’S | < T(z), () < (2?”)2 with the strict inequality on a subset of [0, 7] of positive
|s]—o0
measure and (z) satisfies fOT’y( dr >0, fo v (x)dr > 0 where v (z) = max {v(z),0}.

z€[0,T
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But we obtain the existence result to the equation (1.1) with the nonlinearity g(z,u) = arctanu (it
follows that (z) = 0) if the right hand side f satisfies —=F < fOT flz)de <=L

Others have studied problem (1.1) with jumping nonlinearities [5], [2] using also topological method.

In this article, we choose another strategy of proof which rely essentially on a variational method
(see also [3], [6], [11]). We will assume that the nonlinearity g satisfies 0 < liminf ’@’ <

|s|—o0

lim sup| @| < % + (%)2 and a potential of ¢ is non-strictly monotonic. Precisely, let u = u(a, ),

|s| =00
u:Rx[0,7] = R,u(a,-) € C[0,T] for each a € R, u(-,z) € C(R) for each x € [0, 7] such that

lixin u(a, x) = £oo uniformly on [0, 7']. We denote
a—r 00

T s
P = [ [ g uta.) - (o)) dade.
0o Jo
We suppose that for such u = u(a, x) there exist constants s; < sy < s3 < $4 such that
F(Sl) > F(Sg) and F(Sg) < F(S4) .

We note this assumption is fulfilled if right hand side f satisfies orthogonal condition fOT f(z)dx =0
and ¢ satisfies sign condition g(z,s)s > 0 (Fredholm alternative for a nonlinear equation). We
generalize Landesman-Lazer type condition (see [2], [12]) for a resonance problems. We get solution
to (1.1) also for strong resonant problem for g satisfying lim sg(z,s) = 0 and lim F(z,s) = 0,

|s|—00 |s| =00
see [8], [9].

Similarly to [1] we firstly investigate the Dirichlet problem. Then, we apply this result for finding
periodic solutions. In [1] author investigate problem u”(x) + r(z)u'(x) + g(z,u) = f(x) under a

Lipschitz condition on g. If we rewrite this condition with (z) = ¢ we obtain w < cr where

cr < (%)2 We will assume that w < % + cr. Hence the nonlinearity g can also cross the
eigenvalue (2%)2 if ¢? > 12(%)2.

We note that we can use our approach also to problem with impulses, see [3] and the existence and
stability of periodic solutions to problem (1.1) with f = 0 is discussed in [13].

2 Preliminaries

Notation: We shall use the classical space C*(0, T') of functions whose k-th derivative is continuous
and the space L”(0,T") of measurable real-valued functions whose p-th power of the absolute value is

Lebesgue integrable. We denote H the Sobolev space of absolutely continuous functions w : [0, 7] —
1

R such that v’ € L?(0,T), u(0) = u(T) = 0 endowed with the norm ||u| = (fOT(u’)2 dyc>E :

By a solution to (1.1) we mean a function v € C'(0,T') such that v’ is absolutely continuous, u
satisfies the boundary conditions and the equation (1.1) is satisfied a.e. on (0, 7).

Firstly we prove the existence of a solution to the Dirichlet problem

u'(z) + cu'(x) + g(z,u) = f(z), x€]0,T], 2.1)

1008



where a € R. Then, we apply this result for finding periodic solutions. To obtain an equation with
potential we multiply (2.1) by the function e2%. Then we put w(z) = e2%(u(z) — a) and get for w an
equivalent problem

C2 c w c
w'(@) = S wle) + e5 glo, 5+ a) = 57 f(0), 22)

w(0) =w(T)=0.

We investigate (2.2) by using variational methods. More precisely, we find a critical point of the
functional J, : H — R, which is defined by

1 2

r c r w ¢
Jo(w) = 5/ [(w')? + Zwﬂ dw — / [ Gz, =t a) — e2" fw] dx
0 0 2
where .
G(z, s) :/ g(x,t)dt.
0
We say that w, is a critical point of .J,, if
(J!(wy),z) =0 forall z € H.

We note

Jo(w+ 2) = Ju(w) = 1/ 2w’z + () +%(2wz+zz)} dx

w+z +a
/ /eg g(x,t) dt—e?xfz]
+a
and by mean value theorem we get

/ /w+z+a (z,t)dt] dx AT[chg<x7§(x)) e; g

where {(z) € (-7

[ 4 ).
Therefore every critical point w € H of the functional J, satisfies
r c? T . w c
/ [w’z' + 1 wz] dr — / [eﬁ‘rg(x, —=+a)z — eﬁmfz} dr =0 forall z € H, (2.3)
0 0 €2
then w is also a weak solution to the Dirichlet problem (2.2) and vice versa. The usual regularity

argument for ODE proves immediately (see Fucik [4]) that any weak solution to (2.2) is also a solution
in the sense mentioned above.

We remark that for any function w € H holds

/O ! [(w’)2 - (%)Qwﬂ dz >0, (2.4)

We will suppose that g satisfies the following growth restrictions.
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There exist functions a (z),a_(z) € L'(0,7) and a constant so € R such that for a.e. z € (0, 7)
g(x,s) <a_(x) for s< —sg, g(x,s) > ay(x) for s> s, (2.5)

(hence 0 < lim inf 2220,

|s| =00

) T2
there exists ¢ < <?> such that

_ t 2
g(.fE,S) f(x7 ) SCZ+CT fOI'S,tER,S%t7 S [07T]7 (26)
S_

(hence limsup (s ) < C + c¢r uniformly on [0,7]) and there are ¢; € R*, ¢ € L'(0,T) such
|s| =00

that
lg(z, 8)| < c1]s] + g(x) forall s € R, fora.e. z € [0,7]. (2.7)

Furthermore let u = u(a,z), u : R x [0,7] — R, u(a,-) € C[0,T] for each a € R, u(-,z) € C(R)
for each z € [0, T such that lim u(a,z) = 4occ uniformly on [0, 7], lim wu(a,x) = —oo uniformly
a— o0

a——00
on [0, 7). We denote

// (2, u(a,2)) — f(x)] dadz.

We suppose that for such u = u(a, x) there exist constants s; < sy < s3 < $4 such that

F(s1) > F(sy) and  F(s3) < F(s4) . (2.8)

In this section we introduce two lemmas which will be used in the proof of the main theorem.
Lemma 2.1 (uniqueness) Let g satisfies (2.6) then the equation (2.2) has at most one solution.

Proof. Let wy, ws € H are two solutions to (2.2) then

2

T c
/ [(wl — wq) 2 +—(wy — wg)z] dx (2.9)
0 4

T
= [ [ (oo 2+ 0 e 22 4 0)) ] o,
0 ez ez

forall z € H. We put 2z = w; — wy 1n (2.9) and using the assumption (2.6) we get

/OT((w1 - w2>')2 de < /OT [er(wr —ws)?] da 2.10)

From (2.10), (2.4) we conclude w; = w>.

Lemma 2.2 (continuity) Let a,, — ag then a corresponding sequence (w,,, ) solutions to the equation
(2.2) with a = a,, contains subsequence (wank) such that Wq,, — Wo, Wy € H and wy is a solution
to (2.2) with a = ay.
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Proof. The solution w,,, to (2.2) satisfies
T c? T, w c
/ [wénz’ + n wanz] dzr — / [eiz g(x, Ta; +a,)z — eixfz} dr =0, (2.11)
0 0 €2
forall z € H.

We suppose that the sequence (w,,, ) is unbounded and we put v,, = —22—. Then there exists vy € H

llwan |

such that v,, — vy in H and due to compact embedding H into C'([0,T]) v,, — vo in C([0, T) (taking
a subsequence if it is necessary). We divide (2.11) by ||w,, || and put z = v,, then

r : T g, Yt aun oS
/ [(U;)2+C—vz] dx—/ [ ? & f”"} dr = 0. (2.12)
0 4 0 [wa, | [wa, |

We use inequality fOT(v(’))2 dr < lim inf fOT(ij
n—oo

of the Hilbert norm) and pass to the limit in (2.12). According to (2.6), (2.7) we obtain

/OT(U6)2 dv — /OT [er(vo)?] dz < 1~ /OT [er(vo)?] dz <0,

a contradiction to the inequality (2.4).

)2 dx = 1 (the weak sequential lower semi-continuity

Therefore the sequence (wy,, ) is bounded. Then there exists wy € H such that w,, — w in H,
w,, — wo in L*(0,T), C ([0, T]) (taking a subsequence if it is necessary).

We put n = m in (2.11) and subtract this equality from (2.11) (with n) we obtain

m—co 4

T 2
lim n—oo / [(wan — W,,,)' 7 + — (Wa, — Wa,,) z} dx (2.13)
0

T
—/ [e%‘” (g(x,&—l—an)—g(x,%#—am))z]dx}:O.
0 es® e5®

The convergency w,, — wy in C([0,7T), (2.7) and a,, — a yield
. T c wa wa
lim [e?“”(g(x, — +a,) —g(r, — + am)> (wa, — wam)] dr =0. (2.14)
e J0 e2” e2”

We set 2 = w,, — w,,, in (2.13) then using (2.14) we get

T C2
lim [(w;n — ), )P+ 7 (wa, — wam)Z] dz = 0. (2.15)
m—oo 40

Hence the strong convergence w,, — wpin L?(0,T') and (2.15) imply the strong convergence w,, —
wy in A and we can pass to the limit in (2.11). We obtain

T 02 T c Wo c
/ [wéz’ + 1 woz} dr — / [eix g(r, —— +ag)z — eﬁxfz} dr =0, (2.16)
0 0 €2

for all = € H. Hence wy 1s a critical point of .J,, and a solution to (2.2) with a = ay.

e

Remark 2.1 We have proved that to each a € R there exist function u, = “é“z + a such that the
A:R — H, A(a) = u, is a continuous operator.

1011



3 Main result

Theorem 3.1 Under the assumptions (2.5), (2.6), (2.7), (2.8), Problem (1.1) has at least one solution.

Proof. We prove that J, is a weakly coercive functional for each a € R by a contradiction. Then there
is a sequence (w,,) C H such that ||w,| — oo and a constant ¢, satisfying

liminf J, (w,) < cs. (3.1)

n—oo

We put v,, = 7= then there exists vy € H such that v,, — vp in H, v,, = vo in C([0,T]) . We divide

llwn I

(3.1) by ||w,]||? then

w

To(wy) _ l/OT [(Ul )2 . %Uﬂ o /OT[QCIEG({B, 57 +a) B es” f Un] .

[wal* 2 " ! [[wn |2 [[wall
Co
< . (3.2)
[[wnl]?
Due to the assumptions (2.6), (2.7) we have
TGz, * +a) 1 [Tr/c?
. e2z 2
Y [ [ de < 5/0 (5 +er)ud] ao. ©G-3)

Using (3.3) and passing to the limit in (3.2) we get

([ [or-arwa) <3(- [Fawrao as

a contradiction to the inequality (2.4). Therefore J, is a weakly coercive functional for each a € R.

By the standard arguments we can prove that .J, is a weakly sequentially lower semi-continuous func-
tional on 1. The weak sequential lower semi-continuity and the weak coercivity of the functional .J,
imply (see Struwe [10]) the existence of a critical point w, of the functional .J,. The usual regularity
argument for ODE proves (see Fucik [4]) that w, is also a solution to (2.2).

Now we prove the existence a classical solution to (1.1).

Let (a,) be such sequence that lim a, =00 and (w,, ) be a corresponding sequence of the solutions
n—oo

to (2.2) with a = a, . We denote w; (r) = max{w,,(z),0}, w; (r) = max{—w,,(z),0} and
multiply equation (2.2) by w, . Then, integrating by parts, we have

T 2 T
/ [(w;n’)Q n Cz(w;nﬂ dz = _/ [e (g(x, 22 4 a,) — f)wy, | da. (3.5)
0 0 2

By (2.6) for all £ > 0 there exists 7y > 0 such that g(z,s) < (% + cr + ¢)s for all s > ry and
—g(z,s) < —(% +er+e)sforall s < —rg.
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We can suppose that g > sy and estimate by (2.5), (2.6), (2.7)

2

. u (2.6) c a
_ / [eﬂ (g(:c, wT; + an)) w(;n} dr < (CZ +or+ 8) / [eﬁw(_wgz — an)w;n] dx
e2 €2

w
g; +an<-70

e2 e2

T
2

< (CZ +CT+6> /(w;")de,

0

. . (2.7) . .
e o K B (LR R g P
e2” " e2” "
:’gz +an ’ <ro ’ :ng +an ‘ <ro (3.6)
T

< / [¢5%(crro + qla)) w, ] dr,

0

c wa (25) c
- [ [ et ra)w e S [ o), ] d
ez
“’ic”; +an>ro wgrzl +an2ro

e2 e?2
T

< [[e5lesto wy, | o,
0

Hence there exists Q € L'(0, T') such that

T
—/ [e%fc (g(:p, wTa; +a,) — f) wgn} dr <
0 €2 (3.7)
2

. T T
<——|—CT+€)/ (wan)zdx—i—/ Qu, dz.
4 0 0

We take € such that ¢y :=cp + ¢ < (%)2 Consequently, using (3.5), (3.7) we get

(1 - (iT)Q)/OT[(wan'y] dz S/OT[(wan')Q _ éT(wc;)Q] dz g/OT[Q w;n} dr.  (3.8)

T

This yields that for a,, — oo the sequence (w, ) is bounded in C'([0, T]) (due to compact embedding
H into C([0,77)). Similarly we obtain that the sequence (w, ) is bounded in C([0,T) for a,, —
—00.

w, . .
Now we denote u,, = e, T (n then u,,, 1s a solution to
e2

u'(x) + cu'(z) + g(x,u) = f(z), z€]0,7T],
uw(0) =u(T) = a,.

(3.9

Since (a,) was an arbitrary sequence and (w, ) is bounded in C([0,77]) therefore lim u,(z) = oo

a—r o0
uniformly on [0, 7] . Similarly lim wu,(z) = —oo uniformly on [0, 7] .
a——0o0
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We denote

o= [ ) |ttt = fie)] dade.

T

Using Lemma 2.2 we conclude F' € C(R), F'(s) = / [g(z,us) — f] dx. We get by (2.8) (where
0

u(a,x) = u,(x)) that there exist constants s; < sy < s3 < s4 such that F'(s;) > F(sy) and

F(Sg) S F(S4) .

Hence there exist a constant § € R and a solution @ to (3.9) with 4(0) = @(7) = § such that
T T

F'(8) = / [g(z,u) — f] de = 0.]Integrating (3.9) over [0, '] with u = G we obtain/ " dx = 0.

0 0
Hence @'(0) = @'(T) and the function @ is a solution to the periodic problem (1.1). The proof is
completed.
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