Slovak University of Technology in Bratislava
Faculty of Mechanical Engineering

FORCED DUFFING EQUATION WITH A NON-STRICTLY MONOTONIC POTENTIAL

TOMICZEK Petr (CZ)

Abstract

This article is devoted to study the existence of a solution to the periodic nonlinear second order ordinary differential equation with damping $$
\begin{gathered} u^{\prime \prime}(x)+c u^{\prime}(x)+g(x, u)=f(x), \quad x \in[0, T], \\ u(0)=u(T), u^{\prime}(0)=u^{\prime}(T), \end{gathered}
$$ where $c \in \mathbb{R}, g$ is a Carathéodory function, $f \in L^{1}([0, T])$, a quotient $\frac{g(x, s)}{s}$ lies between 0 and $\frac{c^{2}}{4}+\left(\frac{\pi}{T}\right)^{2}$ and a potential is a non-strictly monotonic function. The technique we use are variational method and critical point theorem.

Keywords: second order ODE, periodic problem, variational method, critical point
Mathematics subject classification: Primary 34G20; Secondary 35A15, 34K10

1 Introduction

The aim of this article is to provide new existence results for the nonlinear periodic boundary problem

$$
\begin{gather*}
u^{\prime \prime}(x)+c u^{\prime}(x)+g(x, u)=f(x), \quad x \in[0, T], \tag{1.1}\\
u(0)=u(T), u^{\prime}(0)=u^{\prime}(T),
\end{gather*}
$$

where $c \in \mathbb{R}$, the nonlinearity $g:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is Carathéodory's function, $f \in L^{1}([0, T])$.
An equation of this form describes for example a spring-mass system with a damper in parallel; or the charge on the capacitor in a circuit containing resistance, capacitance, and inductance.
In papers [7], [14] authors used topological degree arguments and supposed that $\gamma(x) \leq \liminf _{|s| \rightarrow \infty}\left|\frac{g(x, s)}{s}\right|$ $\leq \limsup _{|s| \rightarrow \infty}\left|\frac{g(x, s)}{s}\right| \leq \Gamma(x), \Gamma(x) \leq\left(\frac{2 \pi}{T}\right)^{2}$ with the strict inequality on a subset of $[0, T]$ of positive measure and $\gamma(x)$ satisfies $\int_{0}^{T} \gamma(x) d x \geq 0, \int_{0}^{T} \gamma^{+}(x) d x>0$ where $\gamma^{+}(x)=\max _{x \in[0, T]}\{\gamma(x), 0\}$.

But we obtain the existence result to the equation (1.1) with the nonlinearity $g(x, u)=\arctan u$ (it follows that $\gamma(x)=0$) if the right hand side f satisfies $-\frac{\pi T}{2}<\int_{0}^{T} f(x) d x<\frac{\pi T}{2}$.
Others have studied problem (1.1) with jumping nonlinearities [5], [2] using also topological method.
In this article, we choose another strategy of proof which rely essentially on a variational method (see also [3], [6], [11]). We will assume that the nonlinearity g satisfies $0 \leq \liminf _{|s| \rightarrow \infty}\left|\frac{g(x, s)}{s}\right|<$ $\limsup _{|s| \rightarrow \infty}\left|\frac{g(x, s)}{s}\right|<\frac{c^{2}}{4}+\left(\frac{\pi}{T}\right)^{2}$ and a potential of g is non-strictly monotonic. Precisely, let $u=u(a, x)$, $u: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}, u(a, \cdot) \in C[0, T]$ for each $a \in \mathbb{R}, u(\cdot, x) \in C(\mathbb{R})$ for each $x \in[0, T]$ such that $\lim _{a \rightarrow \pm \infty} u(a, x)= \pm \infty$ uniformly on $[0, T]$. We denote

$$
F(s)=\int_{0}^{T} \int_{0}^{s}[g(x, u(a, x))-f(x)] d a d x .
$$

We suppose that for such $u=u(a, x)$ there exist constants $s_{1}<s_{2}<s_{3}<s_{4}$ such that

$$
F\left(s_{1}\right) \geq F\left(s_{2}\right) \quad \text { and } \quad F\left(s_{3}\right) \leq F\left(s_{4}\right) .
$$

We note this assumption is fulfilled if right hand side f satisfies orthogonal condition $\int_{0}^{T} f(x) d x=0$ and g satisfies sign condition $g(x, s) s \geq 0$ (Fredholm alternative for a nonlinear equation). We generalize Landesman-Lazer type condition (see [2], [12]) for a resonance problems. We get solution to (1.1) also for strong resonant problem for g satisfying $\lim _{|s| \rightarrow \infty} s g(x, s)=0$ and $\lim _{|s| \rightarrow \infty} F(x, s)=0$, see [8], [9].
Similarly to [1] we firstly investigate the Dirichlet problem. Then, we apply this result for finding periodic solutions. In [1] author investigate problem $u^{\prime \prime}(x)+r(x) u^{\prime}(x)+g(x, u)=f(x)$ under a Lipschitz condition on g. If we rewrite this condition with $r(x)=c$ we obtain $\frac{g(x, s)-g(x, t)}{s-t} \leq c_{T}$ where $c_{T}<\left(\frac{\pi}{T}\right)^{2}$. We will assume that $\frac{g(x, s)-g(x, t)}{s-t} \leq \frac{c^{2}}{4}+c_{T}$. Hence the nonlinearity g can also cross the eigenvalue $\left(\frac{2 \pi}{T}\right)^{2}$ if $c^{2}>12\left(\frac{\pi}{T}\right)^{2}$.
We note that we can use our approach also to problem with impulses, see [3] and the existence and stability of periodic solutions to problem (1.1) with $f=0$ is discussed in [13].

2 Preliminaries

Notation: We shall use the classical space $C^{k}(0, T)$ of functions whose k-th derivative is continuous and the space $L^{p}(0, T)$ of measurable real-valued functions whose p-th power of the absolute value is Lebesgue integrable. We denote H the Sobolev space of absolutely continuous functions $u:[0, T] \rightarrow$ \mathbb{R} such that $u^{\prime} \in L^{2}(0, T), u(0)=u(T)=0$ endowed with the norm $\|u\|=\left(\int_{0}^{T}\left(u^{\prime}\right)^{2} d x\right)^{\frac{1}{2}}$.
By a solution to (1.1) we mean a function $u \in C^{1}(0, T)$ such that u^{\prime} is absolutely continuous, u satisfies the boundary conditions and the equation (1.1) is satisfied a.e. on $(0, T)$.

Firstly we prove the existence of a solution to the Dirichlet problem

$$
\begin{gather*}
u^{\prime \prime}(x)+c u^{\prime}(x)+g(x, u)=f(x), \quad x \in[0, T], \tag{2.1}\\
u(0)=u(T)=a,
\end{gather*}
$$

where $a \in \mathbb{R}$. Then, we apply this result for finding periodic solutions. To obtain an equation with potential we multiply (2.1) by the function $e^{\frac{c}{2} x}$. Then we put $w(x)=e^{\frac{c}{2} x}(u(x)-a)$ and get for w an equivalent problem

$$
\begin{gather*}
w^{\prime \prime}(x)-\frac{c^{2}}{4} w(x)+e^{\frac{c}{2} x} g\left(x, \frac{w}{e^{\frac{c}{2} x}}+a\right)=e^{\frac{c}{2} x} f(x), \tag{2.2}\\
w(0)=w(T)=0 .
\end{gather*}
$$

We investigate (2.2) by using variational methods. More precisely, we find a critical point of the functional $J_{a}: H \rightarrow \mathbb{R}$, which is defined by

$$
J_{a}(w)=\frac{1}{2} \int_{0}^{T}\left[\left(w^{\prime}\right)^{2}+\frac{c^{2}}{4} w^{2}\right] d x-\int_{0}^{T}\left[e^{c x} G\left(x, \frac{w}{e^{\frac{c}{2} x}}+a\right)-e^{\frac{c}{2} x} f w\right] d x
$$

where

$$
G(x, s)=\int_{0}^{s} g(x, t) d t
$$

We say that w_{a} is a critical point of J_{a}, if

$$
\left\langle J_{a}^{\prime}\left(w_{a}\right), z\right\rangle=0 \quad \text { for all } z \in H
$$

We note

$$
\begin{aligned}
J_{a}(w+z)-J_{a}(w)= & \frac{1}{2} \int_{0}^{T}\left[2 w^{\prime} z^{\prime}+\left(z^{\prime}\right)^{2}+\frac{c^{2}}{4}\left(2 w z+z^{2}\right)\right] d x \\
& -\int_{0}^{T}\left[e^{c x} \int_{\frac{w}{e^{\frac{w}{2} x}}+a}^{\frac{w+}{e^{\frac{c}{2} x}}+a} g(x, t) d t-e^{\frac{c}{2} x} f z\right] d x
\end{aligned}
$$

and by mean value theorem we get

$$
\int_{0}^{T}\left[e^{c x} \int_{\frac{w}{e^{\frac{w}{2} x}}+a}^{\frac{w+z}{\frac{c}{2} x}+a} g(x, t) d t\right] d x=\int_{0}^{T}\left[e^{c x} g(x, \xi(x)) \frac{z}{e^{\frac{c}{2} x}}\right] d x=\int_{0}^{T}\left[e^{\frac{c}{2} x} g(x, \xi(x)) z\right] d x
$$

where $\xi(x) \in\left(\frac{w}{e^{\frac{2}{x}} x}+a, \frac{w+z}{e^{\frac{2}{2} x}}+a\right)$.
Therefore every critical point $w \in H$ of the functional J_{a} satisfies

$$
\begin{equation*}
\int_{0}^{T}\left[w^{\prime} z^{\prime}+\frac{c^{2}}{4} w z\right] d x-\int_{0}^{T}\left[e^{\frac{c}{2} x} g\left(x, \frac{w}{e^{\frac{c}{2}} x}+a\right) z-e^{\frac{c}{2} x} f z\right] d x=0 \quad \text { for all } z \in H \tag{2.3}
\end{equation*}
$$

then w is also a weak solution to the Dirichlet problem (2.2) and vice versa. The usual regularity argument for ODE proves immediately (see Fučík [4]) that any weak solution to (2.2) is also a solution in the sense mentioned above.

We remark that for any function $w \in H$ holds

$$
\begin{equation*}
\int_{0}^{T}\left[\left(w^{\prime}\right)^{2}-\left(\frac{\pi}{T}\right)^{2} w^{2}\right] d x \geq 0 \tag{2.4}
\end{equation*}
$$

We will suppose that g satisfies the following growth restrictions.

There exist functions $a_{+}(x), a_{-}(x) \in L^{1}(0, \pi)$ and a constant $s_{0} \in \mathbb{R}^{+}$such that for a.e. $x \in(0, \pi)$

$$
\begin{equation*}
g(x, s) \leq a_{-}(x) \quad \text { for } \quad s \leq-s_{0}, \quad g(x, s) \geq a_{+}(x) \quad \text { for } \quad s \geq s_{0} \tag{2.5}
\end{equation*}
$$

(hence $0 \leq \liminf _{|s| \rightarrow \infty} \frac{g(x, s)}{s}$),
there exists $c_{T}<\left(\frac{\pi}{T}\right)^{2}$ such that

$$
\begin{equation*}
\frac{g(x, s)-g(x, t)}{s-t} \leq \frac{c^{2}}{4}+c_{T} \quad \text { for } s, t \in \mathbb{R}, s \neq t, x \in[0, T] \tag{2.6}
\end{equation*}
$$

(hence $\quad \limsup _{|s| \rightarrow \infty} \frac{g(x, s)}{s} \leq \frac{c^{2}}{4}+c_{T} \quad$ uniformly on $[0, T]$) and there are $c_{1} \in \mathbb{R}^{+}, q \in L^{1}(0, T)$ such that

$$
\begin{equation*}
|g(x, s)| \leq c_{1}|s|+q(x) \quad \text { for all } s \in \mathbb{R}, \text { for a. e. } x \in[0, T] . \tag{2.7}
\end{equation*}
$$

Furthermore let $u=u(a, x), u: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}, u(a, \cdot) \in C[0, T]$ for each $a \in \mathbb{R}, u(\cdot, x) \in C(\mathbb{R})$ for each $x \in[0, T]$ such that $\lim _{a \rightarrow \infty} u(a, x)=+\infty$ uniformly on $[0, T], \lim _{a \rightarrow-\infty} u(a, x)=-\infty$ uniformly on $[0, T]$. We denote

$$
F(s)=\int_{0}^{T} \int_{0}^{s}[g(x, u(a, x))-f(x)] d a d x .
$$

We suppose that for such $u=u(a, x)$ there exist constants $s_{1}<s_{2}<s_{3}<s_{4}$ such that

$$
\begin{equation*}
F\left(s_{1}\right) \geq F\left(s_{2}\right) \quad \text { and } \quad F\left(s_{3}\right) \leq F\left(s_{4}\right) . \tag{2.8}
\end{equation*}
$$

In this section we introduce two lemmas which will be used in the proof of the main theorem.

Lemma 2.1 (uniqueness) Let g satisfies (2.6) then the equation (2.2) has at most one solution.

Proof. Let $w_{1}, w_{2} \in H$ are two solutions to (2.2) then

$$
\begin{align*}
& \int_{0}^{T}\left[\left(w_{1}-w_{2}\right)^{\prime} z^{\prime}+\frac{c^{2}}{4}\left(w_{1}-w_{2}\right) z\right] d x \tag{2.9}\\
&=\int_{0}^{T}\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{1}}{e^{\frac{c}{2} x}}+a\right)-g\left(x, \frac{w_{2}}{e^{\frac{c}{2} x}}+a\right)\right) z\right] d x
\end{align*}
$$

for all $z \in H$. We put $z=w_{1}-w_{2}$ in (2.9) and using the assumption (2.6) we get

$$
\begin{equation*}
\int_{0}^{T}\left(\left(w_{1}-w_{2}\right)^{\prime}\right)^{2} d x \leq \int_{0}^{T}\left[c_{T}\left(w_{1}-w_{2}\right)^{2}\right] d x \tag{2.10}
\end{equation*}
$$

From (2.10), (2.4) we conclude $w_{1}=w_{2}$.

Lemma 2.2 (continuity) Let $a_{n} \rightarrow a_{0}$ then a corresponding sequence $\left(w_{a_{n}}\right)$ solutions to the equation (2.2) with $a=a_{n}$ contains subsequence $\left(w_{a_{n_{k}}}\right)$ such that $w_{a_{n_{k}}} \rightarrow w_{0}, w_{0} \in H$ and w_{0} is a solution to (2.2) with $a=a_{0}$.

Proof. The solution $w_{a_{n}}$ to (2.2) satisfies

$$
\begin{equation*}
\int_{0}^{T}\left[w_{a_{n}}^{\prime} z^{\prime}+\frac{c^{2}}{4} w_{a_{n}} z\right] d x-\int_{0}^{T}\left[e^{\frac{c}{2} x} g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right) z-e^{\frac{c}{2} x} f z\right] d x=0 \tag{2.11}
\end{equation*}
$$

for all $z \in H$.
We suppose that the sequence $\left(w_{a_{n}}\right)$ is unbounded and we put $v_{n}=\frac{w_{a_{n}}}{\left\|w_{a_{n}}\right\|}$. Then there exists $v_{0} \in H$ such that $v_{n} \rightharpoonup v_{0}$ in H and due to compact embedding H into $C([0, T]) v_{n} \rightarrow v_{0}$ in $C([0, T])$ (taking a subsequence if it is necessary). We divide (2.11) by $\left\|w_{a_{n}}\right\|$ and put $z=v_{n}$ then

$$
\begin{equation*}
\int_{0}^{T}\left[\left(v_{n}^{\prime}\right)^{2}+\frac{c^{2}}{4} v_{n}^{2}\right] d x-\int_{0}^{T}\left[\frac{e^{\frac{c}{2} x} g\left(x, \frac{w_{a_{n}}}{e^{\frac{a^{2}}{} x}}+a_{n}\right) v_{n}}{\left\|w_{a_{n}}\right\|}-\frac{e^{\frac{c}{2} x} f v_{n}}{\left\|w_{a_{n}}\right\|}\right] d x=0 . \tag{2.12}
\end{equation*}
$$

We use inequality $\int_{0}^{T}\left(v_{0}^{\prime}\right)^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{0}^{T}\left(v_{n}^{\prime}\right)^{2} d x=1$ (the weak sequential lower semi-continuity of the Hilbert norm) and pass to the limit in (2.12). According to (2.6), (2.7) we obtain

$$
\int_{0}^{T}\left(v_{0}^{\prime}\right)^{2} d x-\int_{0}^{T}\left[c_{T}\left(v_{0}\right)^{2}\right] d x \leq 1-\int_{0}^{T}\left[c_{T}\left(v_{0}\right)^{2}\right] d x \leq 0
$$

a contradiction to the inequality (2.4).
Therefore the sequence $\left(w_{a_{n}}\right)$ is bounded. Then there exists $w_{0} \in H$ such that $w_{a_{n}} \rightharpoonup w_{0}$ in H, $w_{a_{n}} \rightarrow w_{0}$ in $L^{2}(0, T), C([0, T])$ (taking a subsequence if it is necessary).
We put $n=m$ in (2.11) and subtract this equality from (2.11) (with n) we obtain

$$
\begin{gather*}
\lim _{\substack{n \rightarrow \infty \\
m \rightarrow \infty}}\left\{\int_{0}^{T}\left[\left(w_{a_{n}}-w_{a_{m}}\right)^{\prime} z^{\prime}+\frac{c^{2}}{4}\left(w_{a_{n}}-w_{a_{m}}\right) z\right] d x\right. \tag{2.13}\\
\left.-\int_{0}^{T}\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right)-g\left(x, \frac{w_{a_{m}}}{e^{\frac{c}{2} x}}+a_{m}\right)\right) z\right] d x\right\}=0 .
\end{gather*}
$$

The convergency $w_{a_{n}} \rightarrow w_{0}$ in $C([0, T]),(2.7)$ and $a_{n} \rightarrow a_{0}$ yield

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \int_{0}^{T}\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right)-g\left(x, \frac{w_{a_{m}}}{e^{\frac{c}{2} x}}+a_{m}\right)\right)\left(w_{a_{n}}-w_{a_{m}}\right)\right] d x=0 . \tag{2.14}
\end{equation*}
$$

We set $z=w_{a_{n}}-w_{a_{m}}$ in (2.13) then using (2.14) we get

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} \int_{0}^{T}\left[\left(w_{a_{n}}^{\prime}-w_{a_{m}}^{\prime}\right)^{2}+\frac{c^{2}}{4}\left(w_{a_{n}}-w_{a_{m}}\right)^{2}\right] d x=0 \tag{2.15}
\end{equation*}
$$

Hence the strong convergence $w_{a_{n}} \rightarrow w_{0}$ in $L^{2}(0, T)$ and (2.15) imply the strong convergence $w_{a_{n}} \rightarrow$ w_{0} in H and we can pass to the limit in (2.11). We obtain

$$
\begin{equation*}
\int_{0}^{T}\left[w_{0}^{\prime} z^{\prime}+\frac{c^{2}}{4} w_{0} z\right] d x-\int_{0}^{T}\left[e^{\frac{c}{2} x} g\left(x, \frac{w_{0}}{e^{\frac{c}{2} x}}+a_{0}\right) z-e^{\frac{c}{2} x} f z\right] d x=0 \tag{2.16}
\end{equation*}
$$

for all $z \in H$. Hence w_{0} is a critical point of $J_{a_{0}}$ and a solution to (2.2) with $a=a_{0}$.
Remark 2.1 We have proved that to each $a \in \mathbb{R}$ there exist function $u_{a}=\frac{w_{a}}{e^{\frac{2}{2} x}}+a$ such that the $A: \mathbb{R} \rightarrow H, A(a)=u_{a}$ is a continuous operator.

3 Main result

Theorem 3.1 Under the assumptions (2.5), (2.6), (2.7), (2.8), Problem (1.1) has at least one solution.

Proof. We prove that J_{a} is a weakly coercive functional for each $a \in \mathbb{R}$ by a contradiction. Then there is a sequence $\left(w_{n}\right) \subset H$ such that $\left\|w_{n}\right\| \rightarrow \infty$ and a constant c_{2} satisfying

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} J_{a}\left(w_{n}\right) \leq c_{2} . \tag{3.1}
\end{equation*}
$$

We put $v_{n}=\frac{w_{n}}{\left\|w_{n}\right\|}$ then there exists $v_{0} \in H$ such that $v_{n} \rightharpoonup v_{0}$ in $H, v_{n} \rightarrow v_{0}$ in $C([0, T])$. We divide (3.1) by $\left\|w_{n}\right\|^{2}$ then

$$
\begin{align*}
\frac{J_{a}\left(w_{n}\right)}{\left\|w_{n}\right\|^{2}} & =\frac{1}{2} \int_{0}^{T}\left[\left(v_{n}^{\prime}\right)^{2}+\frac{c^{2}}{4} v_{n}^{2}\right] d x-\int_{0}^{T}\left[\frac{e^{c x} G\left(x, \frac{w_{n}}{e^{\frac{c}{2} x}}+a\right)}{\left\|w_{n}\right\|^{2}}-\frac{e^{\frac{c}{2} x} f}{\left\|w_{n}\right\|} v_{n}\right] d x \\
& \leq \frac{c_{2}}{\left\|w_{n}\right\|^{2}} \tag{3.2}
\end{align*}
$$

Due to the assumptions (2.6), (2.7) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{T}\left[\frac{e^{c x} G\left(x, \frac{w_{n}}{\left.e^{\frac{e_{2}^{x}}{2}}+a\right)}\right.}{\left\|w_{n}\right\|^{2}}\right] d x \leq \frac{1}{2} \int_{0}^{T}\left[\left(\frac{c^{2}}{4}+c_{T}\right) v_{0}^{2}\right] d x \tag{3.3}
\end{equation*}
$$

Using (3.3) and passing to the limit in (3.2) we get

$$
\begin{equation*}
\frac{1}{2}\left(\int_{0}^{T}\left[\left(v_{0}^{\prime}\right)^{2}-c_{T}\left(v_{0}\right)^{2}\right] d x\right) \leq \frac{1}{2}\left(1-\int_{0}^{T} c_{T}\left(v_{0}\right)^{2} d x\right) \leq 0 \tag{3.4}
\end{equation*}
$$

a contradiction to the inequality (2.4). Therefore J_{a} is a weakly coercive functional for each $a \in \mathbb{R}$.

By the standard arguments we can prove that J_{a} is a weakly sequentially lower semi-continuous functional on H. The weak sequential lower semi-continuity and the weak coercivity of the functional J_{a} imply (see Struwe [10]) the existence of a critical point w_{a} of the functional J_{a}. The usual regularity argument for ODE proves (see Fučík [4]) that w_{a} is also a solution to (2.2).

Now we prove the existence a classical solution to (1.1).
Let $\left(a_{n}\right)$ be such sequence that $\lim _{n \rightarrow \infty} a_{n}=\infty$ and $\left(w_{a_{n}}\right)$ be a corresponding sequence of the solutions to (2.2) with $a=a_{n}$. We denote $w_{a_{n}}^{+}(x)=\max \left\{w_{a_{n}}(x), 0\right\}, w_{a_{n}}^{-}(x)=\max \left\{-w_{a_{n}}(x), 0\right\}$ and multiply equation (2.2) by $w_{a_{n}}^{-}$. Then, integrating by parts, we have

$$
\begin{equation*}
\int_{0}^{T}\left[\left(w_{a_{n}}^{-}\right)^{2}+\frac{c^{2}}{4}\left(w_{a_{n}}^{-}\right)^{2}\right] d x=-\int_{0}^{T}\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right)-f\right) w_{a_{n}}^{-}\right] d x . \tag{3.5}
\end{equation*}
$$

By (2.6) for all $\varepsilon>0$ there exists $r_{0}>0$ such that $g(x, s) \leq\left(\frac{c^{2}}{4}+c_{T}+\varepsilon\right) s$ for all $s \geq r_{0}$ and $-g(x, s) \leq-\left(\frac{c^{2}}{4}+c_{T}+\varepsilon\right) s$ for all $s \leq-r_{0}$.

We can suppose that $r_{0} \geq s_{0}$ and estimate by (2.5), (2.6), (2.7)

$$
\begin{align*}
& -\int_{\frac{w_{a}}{e^{\frac{2}{2} x}}+a_{n} \leq-r_{0}}\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right)\right) w_{a_{n}}^{-}\right] d x \stackrel{(2.6)}{\leq}\left(\frac{c^{2}}{4}+c_{T}+\varepsilon\right) \int_{\frac{w_{a_{n}}}{e^{\frac{2}{2} x}+a_{n} \leq-r_{0}}}\left[e^{\frac{c}{2} x}\left(-\frac{w_{a_{n}}}{e^{\frac{c}{2} x}}-a_{n}\right) w_{a_{n}}^{-}\right] d x \\
& \leq\left(\frac{c^{2}}{4}+c_{T}+\varepsilon\right) \int_{0}^{T}\left(w_{a_{n}}^{-}\right)^{2} d x, \\
& \left.-\int\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right)\right) w_{a_{n}}^{-}\right] d x \stackrel{(2.7)}{\leq} \int e^{\frac{c}{2} x}\left(c_{1}\left|\frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right|+q(x)\right) w_{a_{n}}^{-}\right] d x \\
& \left|\frac{w_{a_{n}}}{e \frac{c}{2} x}+a_{n}\right| \leq r_{0} \quad\left|\frac{w_{a_{n}}}{e} \frac{e^{\frac{c}{2} x}+a_{n}}{}\right| \leq r_{0} \tag{3.6}\\
& \leq \int_{0}^{T}\left[e^{\frac{c}{2} x}\left(c_{1} r_{0}+q(x)\right) w_{a_{n}}^{-}\right] d x, \\
& -\int\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right)\right) w_{a_{n}}^{-}\right] d x \stackrel{(2.5)}{\leq} \int\left[e^{\frac{c}{2} x}\left(-a_{+}(x)\right) w_{a_{n}}^{-}\right] d x \\
& \frac{w_{a_{n}}}{e^{\frac{2}{2} x}+a_{n} \geq r_{0}} \quad \frac{w a_{n}}{e^{\frac{a_{n}}{x}}+a_{n} \geq r_{0}} \\
& \leq \int_{0}^{T}\left[e^{\frac{c}{2} x}\left|a_{+}(x)\right| w_{a_{n}}^{-}\right] d x .
\end{align*}
$$

Hence there exists $Q \in L^{1}(0, T)$ such that

$$
\begin{align*}
& -\int_{0}^{T}\left[e^{\frac{c}{2} x}\left(g\left(x, \frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}\right)-f\right) w_{a_{n}}^{-}\right] d x \leq \tag{3.7}\\
& \qquad\left(\frac{c^{2}}{4}+c_{T}+\varepsilon\right) \int_{0}^{T}\left(w_{a_{n}}^{-}\right)^{2} d x+\int_{0}^{T} Q w_{a_{n}}^{-} d x
\end{align*}
$$

We take ε such that $\hat{c}_{T}:=c_{T}+\varepsilon<\left(\frac{\pi}{T}\right)^{2}$. Consequently, using (3.5), (3.7) we get

$$
\begin{equation*}
\left(1-\frac{\hat{c}_{T}}{\left(\frac{\pi}{T}\right)^{2}}\right) \int_{0}^{T}\left[\left(w_{a_{n}}^{-}\right)^{2}\right] d x \leq \int_{0}^{T}\left[\left(w_{a_{n}}^{-}\right)^{2}-\hat{c}_{T}\left(w_{a_{n}}^{-}\right)^{2}\right] d x \leq \int_{0}^{T}\left[Q w_{a_{n}}^{-}\right] d x . \tag{3.8}
\end{equation*}
$$

This yields that for $a_{n} \rightarrow \infty$ the sequence $\left(w_{a_{n}}^{-}\right)$is bounded in $C([0, T])$ (due to compact embedding H into $C([0, T])$) . Similarly we obtain that the sequence $\left(w_{a_{n}}^{+}\right)$is bounded in $C([0, T])$ for $a_{n} \rightarrow$ $-\infty$.
Now we denote $u_{a_{n}}=\frac{w_{a_{n}}}{e^{\frac{c}{2} x}}+a_{n}$ then $u_{a_{n}}$ is a solution to

$$
\begin{align*}
& u^{\prime \prime}(x)+c u^{\prime}(x)+g(x, u)=f(x), \quad x \in[0, T], \tag{3.9}\\
& u(0)=u(T)=a_{n} .
\end{align*}
$$

Since $\left(a_{n}\right)$ was an arbitrary sequence and $\left(w_{a}^{-}\right)$is bounded in $C([0, T])$ therefore $\lim _{a \rightarrow \infty} u_{a}(x)=\infty$ uniformly on $[0, T]$. Similarly $\lim _{a \rightarrow-\infty} u_{a}(x)=-\infty$ uniformly on $[0, T]$.

We denote

$$
F(s)=\int_{0}^{T} \int_{0}^{s}\left[g\left(x, u_{a}(x)\right)-f(x)\right] d a d x
$$

Using Lemma 2.2 we conclude $F \in C(\mathbb{R}), F^{\prime}(s)=\int_{0}^{T}\left[g\left(x, u_{s}\right)-f\right] d x$. We get by (2.8) (where $u(a, x)=u_{a}(x)$) that there exist constants $s_{1}<s_{2}<s_{3}<s_{4}$ such that $F\left(s_{1}\right) \geq F\left(s_{2}\right)$ and $F\left(s_{3}\right) \leq F\left(s_{4}\right)$.
Hence there exist a constant $\hat{s} \in \mathbb{R}$ and a solution \hat{u} to (3.9) with $\hat{u}(0)=\hat{u}(T)=\hat{s}$ such that $F^{\prime}(\hat{s})=\int_{0}^{T}[g(x, \hat{u})-f] d x=0$. Integrating (3.9) over $[0, T]$ with $u=\hat{u}$ we obtain $\int_{0}^{T} \hat{u}^{\prime \prime} d x=0$. Hence $\hat{u}^{\prime}(0)=\hat{u}^{\prime}(T)$ and the function \hat{u} is a solution to the periodic problem (1.1). The proof is completed.

Acknowledgements: This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports.

References

[1] AMSTER P., Nonlinearities in a second order ODE USA-Chile Workshop on Nonlinear Analysis, Electronic Journal of Differential Equations, Conf. 06, 2001, pp. 13-21.
[2] DRÁBEK P., INVERNIZZI S., On the periodic BVP for the forced Duffing equation with jumping nonlinearity, Nonlinear Analysis 10 (1986), 643-650.
[3] DRÁBEK P., LANGEROVÁ M., On the second order periodic problem at resonance with impulses Journal of Mathematical Analysis and Applications, 428(2015) 1339—1353.
[4] FUČÍK S., Solvability of nonlinear equations and boundary value problems, D. Reidel Publishing Company, Holland 1980.
[5] HABETS P., Existence of periodic solutions of Duffing equations, Journal of Differential Equations 78 (1989), pp. 1=-32.
[6] MARIN M., On weak solutions in elasticity of dipolar bodies with voids, Journal of Computational and Applied Mathematics 82 (1997), pp. 291-297.
[7] MAWHIN J., WARD J.R., Nonuniform nonresonance condition at the two first eigenvalue for periodic solutions of forced Liénard and Duffing equations, Rocky Mountain Journal of Mathematics 12(1982), no.4, pp. 643-654.
[8] DA SILVA E. D., Quasilinear elliptic problems under strong resonance conditions, Nonlinear Analysis. 73 (2010), no. 8, 2451-2462
[9] DA SILVA E. D., Resonant elliptic problems under Cerami condition, arXiv:1205.2724.
[10] STRUWE M., Variational Methods, Springer, Berlin, (1996).
[11] TOMICZEK P., Forced Duffing equation with a resonance condition Advanced Nonlinear Studies 10 (2010), pp 573-580.
[12] TOMICZEK P., Periodic problem with a potential Landesman Lazer condition, Hindawi Publishing Corporation Boundary Value Problems (2010), Article ID 586971, 8 pages doi:10.1155/2010/586971.
[13] TORRES P.J., Existence and Stability of Periodic Solutions of a Duffing Equation by Using a New Maximum Principle, Mediterranean Journal of Mathematics, 1 (2004), 479--486.
[14] WANG C., Multiplicity of periodic solutions for Duffing equations under nonuniform nonresonance condition, Proceedings of the American Mathematical Society, Vol. 126, No. 6, 1998, pp. 1725-1732.

Current address

Tomiczek Petr, RNDr., CSc.

European Centre of Excellence NTIS - New Technologies for Information Society
Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia Technická 8, 30614 Plzeň, Czech Republic
E-mail: tomiczek@kma.zcu.cz

