

Proceedings

FORCED DUFFING EQUATION WITH A NON-STRICTLY MONOTONIC POTENTIAL

TOMICZEK Petr (CZ)

Abstract. This article is devoted to study the existence of a solution to the periodic nonlinear second order ordinary differential equation with damping

$$u''(x) + c u'(x) + g(x, u) = f(x), \quad x \in [0, T],$$

$$u(0) = u(T), \ u'(0) = u'(T),$$

where $c \in \mathbb{R}$, g is a Carathéodory function, $f \in L^1([0,T])$, a quotient $\frac{g(x,s)}{s}$ lies between 0 and $\frac{c^2}{4} + (\frac{\pi}{T})^2$ and a potential is a non-strictly monotonic function. The technique we use are variational method and critical point theorem.

Keywords: second order ODE, periodic problem, variational method, critical point

Mathematics subject classification: Primary 34G20; Secondary 35A15, 34K10

1 Introduction

The aim of this article is to provide new existence results for the nonlinear periodic boundary problem

$$u''(x) + c u'(x) + g(x, u) = f(x), \quad x \in [0, T],$$

$$u(0) = u(T), \ u'(0) = u'(T),$$

(1.1)

where $c \in \mathbb{R}$, the nonlinearity $g: [0, T] \times \mathbb{R} \to \mathbb{R}$ is Carathéodory's function, $f \in L^1([0, T])$.

An equation of this form describes for example a spring-mass system with a damper in parallel; or the charge on the capacitor in a circuit containing resistance, capacitance, and inductance.

In papers [7], [14] authors used topological degree arguments and supposed that $\gamma(x) \leq \liminf_{|s|\to\infty} \left|\frac{g(x,s)}{s}\right|$ $\leq \limsup_{|s|\to\infty} \left|\frac{g(x,s)}{s}\right| \leq \Gamma(x)$, $\Gamma(x) \leq \left(\frac{2\pi}{T}\right)^2$ with the strict inequality on a subset of [0,T] of positive measure and $\gamma(x)$ satisfies $\int_0^T \gamma(x) dx \geq 0$, $\int_0^T \gamma^+(x) dx > 0$ where $\gamma^+(x) = \max_{x \in [0,T]} \{\gamma(x), 0\}$.

But we obtain the existence result to the equation (1.1) with the nonlinearity $g(x, u) = \arctan u$ (it follows that $\gamma(x) = 0$ if the right hand side f satisfies $-\frac{\pi T}{2} < \int_0^T f(x) dx < \frac{\pi T}{2}$.

Others have studied problem (1.1) with jumping nonlinearities [5], [2] using also topological method. In this article, we choose another strategy of proof which rely essentially on a variational method (see also [3], [6], [11]). We will assume that the nonlinearity g satisfies $0 \leq \liminf_{s \to \infty} \left| \frac{g(x,s)}{s} \right| < \infty$ $\limsup_{k \in \mathbb{N}} \left| \frac{g(x,s)}{s} \right| < \frac{c^2}{4} + \left(\frac{\pi}{T}\right)^2 \text{ and a potential of } g \text{ is non-strictly monotonic. Precisely, let } u = u(a,x),$ $u: \mathbb{R} \times [0,T] \to \mathbb{R}, u(a,\cdot) \in C[0,T]$ for each $a \in \mathbb{R}, u(\cdot,x) \in C(\mathbb{R})$ for each $x \in [0,T]$ such that $\lim_{a \to \pm \infty} u(a, x) = \pm \infty \text{ uniformly on } [0, T]. \text{ We denote}$

$$F(s) = \int_0^T \int_0^s \left[g(x, u(a, x)) - f(x) \right] \, da \, dx \, .$$

We suppose that for such u = u(a, x) there exist constants $s_1 < s_2 < s_3 < s_4$ such that

$$F(s_1) \ge F(s_2)$$
 and $F(s_3) \le F(s_4)$.

We note this assumption is fulfilled if right hand side f satisfies orthogonal condition $\int_0^T f(x) dx = 0$ and g satisfies sign condition $g(x,s)s \ge 0$ (Fredholm alternative for a nonlinear equation). We generalize Landesman-Lazer type condition (see [2], [12]) for a resonance problems. We get solution to (1.1) also for strong resonant problem for g satisfying $\lim_{|s|\to\infty} sg(x,s) = 0$ and $\lim_{|s|\to\infty} F(x,s) = 0$, see [8], [9].

Similarly to [1] we firstly investigate the Dirichlet problem. Then, we apply this result for finding periodic solutions. In [1] author investigate problem u''(x) + r(x)u'(x) + g(x, u) = f(x) under a Lipschitz condition on g. If we rewrite this condition with r(x) = c we obtain $\frac{g(x,s)-g(x,t)}{s-t} \le c_T$ where $c_T < \left(\frac{\pi}{T}\right)^2$. We will assume that $\frac{g(x,s)-g(x,t)}{s-t} \le \frac{c^2}{4} + c_T$. Hence the nonlinearity g can also cross the eigenvalue $\left(\frac{2\pi}{T}\right)^2$ if $c^2 > 12\left(\frac{\pi}{T}\right)^2$.

We note that we can use our approach also to problem with impulses, see [3] and the existence and stability of periodic solutions to problem (1.1) with f = 0 is discussed in [13].

2 Preliminaries

Notation: We shall use the classical space $C^k(0,T)$ of functions whose k-th derivative is continuous and the space $L^{p}(0,T)$ of measurable real-valued functions whose p-th power of the absolute value is Lebesgue integrable. We denote H the Sobolev space of absolutely continuous functions $u: [0,T] \rightarrow$ \mathbb{R} such that $u' \in L^2(0,T)$, u(0) = u(T) = 0 endowed with the norm $||u|| = \left(\int_0^T (u')^2 dx\right)^{\frac{1}{2}}$.

By a solution to (1.1) we mean a function $u \in C^1(0,T)$ such that u' is absolutely continuous, u satisfies the boundary conditions and the equation (1.1) is satisfied a.e. on (0, T).

Firstly we prove the existence of a solution to the Dirichlet problem

$$u''(x) + c u'(x) + g(x, u) = f(x), \quad x \in [0, T],$$

$$u(0) = u(T) = a,$$

(2.1)

where $a \in \mathbb{R}$. Then, we apply this result for finding periodic solutions. To obtain an equation with potential we multiply (2.1) by the function $e^{\frac{c}{2}x}$. Then we put $w(x) = e^{\frac{c}{2}x}(u(x) - a)$ and get for w an equivalent problem

$$w''(x) - \frac{c^2}{4}w(x) + e^{\frac{c}{2}x}g(x, \frac{w}{e^{\frac{c}{2}x}} + a) = e^{\frac{c}{2}x}f(x), \qquad (2.2)$$
$$w(0) = w(T) = 0.$$

We investigate (2.2) by using variational methods. More precisely, we find a critical point of the functional $J_a: H \to \mathbb{R}$, which is defined by

$$J_a(w) = \frac{1}{2} \int_0^T \left[(w')^2 + \frac{c^2}{4} w^2 \right] dx - \int_0^T \left[e^{cx} G(x, \frac{w}{e^{\frac{c}{2}x}} + a) - e^{\frac{c}{2}x} fw \right] dx,$$

where

$$G(x,s) = \int_0^s g(x,t) \, dt \, .$$

We say that w_a is a critical point of J_a , if

$$\langle J'_a(w_a), z \rangle = 0$$
 for all $z \in H$.

We note

$$J_{a}(w+z) - J_{a}(w) = \frac{1}{2} \int_{0}^{T} \left[2w'z' + (z')^{2} + \frac{c^{2}}{4} (2wz+z^{2}) \right] dx$$
$$- \int_{0}^{T} \left[e^{cx} \int_{\frac{w+z}{e^{\frac{c}{2}x}+a}}^{\frac{w+z}{e^{\frac{c}{2}x}+a}} g(x,t) dt - e^{\frac{c}{2}x} fz \right] dx,$$

and by mean value theorem we get

$$\int_0^T \left[e^{cx} \int_{\frac{e^{\frac{w}{2}x}}{e^{\frac{c}{2}x}} + a}^{\frac{w+z}{e^{\frac{c}{2}x}} + a} g(x,t) \, dt \right] dx = \int_0^T \left[e^{cx} g(x,\xi(x)) \, \frac{z}{e^{\frac{c}{2}x}} \right] dx = \int_0^T \left[e^{\frac{c}{2}x} g(x,\xi(x)) \, z \right] dx$$

where $\xi(x) \in (\frac{w}{e^{\frac{c}{2}x}} + a, \frac{w+z}{e^{\frac{c}{2}x}} + a).$

Therefore every critical point $w \in H$ of the functional J_a satisfies

$$\int_{0}^{T} \left[w'z' + \frac{c^{2}}{4} wz \right] dx - \int_{0}^{T} \left[e^{\frac{c}{2}x} g(x, \frac{w}{e^{\frac{c}{2}x}} + a)z - e^{\frac{c}{2}x} fz \right] dx = 0 \quad \text{for all} \ z \in H,$$
(2.3)

then w is also a weak solution to the Dirichlet problem (2.2) and vice versa. The usual regularity argument for ODE proves immediately (see Fučík [4]) that any weak solution to (2.2) is also a solution in the sense mentioned above.

We remark that for any function $w \in H$ holds

$$\int_{0}^{T} \left[(w')^{2} - \left(\frac{\pi}{T}\right)^{2} w^{2} \right] dx \ge 0.$$
 (2.4)

We will suppose that g satisfies the following growth restrictions.

There exist functions $a_+(x), a_-(x) \in L^1(0, \pi)$ and a constant $s_0 \in \mathbb{R}^+$ such that for a.e. $x \in (0, \pi)$

$$g(x,s) \le a_{-}(x)$$
 for $s \le -s_0$, $g(x,s) \ge a_{+}(x)$ for $s \ge s_0$, (2.5)

(hence $0 \leq \liminf_{|s| \to \infty} \frac{g(x,s)}{s}$),

there exists
$$c_T < \left(\frac{\pi}{T}\right)^2$$
 such that

$$\frac{g(x,s) - g(x,t)}{s-t} \le \frac{c^2}{4} + c_T \qquad \text{for } s, t \in \mathbb{R}, \ s \neq t, \ x \in [0,T],$$
(2.6)

(hence $\limsup_{|s|\to\infty} \frac{g(x,s)}{s} \leq \frac{c^2}{4} + c_T$ uniformly on [0,T]) and there are $c_1 \in \mathbb{R}^+$, $q \in L^1(0,T)$ such that

 $|g(x,s)| \le c_1 |s| + q(x)$ for all $s \in \mathbb{R}$, for a.e. $x \in [0,T]$.

Furthermore let $u = u(a, x), u : \mathbb{R} \times [0, T] \to \mathbb{R}, u(a, \cdot) \in C[0, T]$ for each $a \in \mathbb{R}, u(\cdot, x) \in C(\mathbb{R})$ for each $x \in [0, T]$ such that $\lim_{a \to \infty} u(a, x) = +\infty$ uniformly on $[0, T], \lim_{a \to -\infty} u(a, x) = -\infty$ uniformly on [0, T]. We denote

$$F(s) = \int_0^T \int_0^s \left[g(x, u(a, x)) - f(x) \right] \, da \, dx$$

We suppose that for such u = u(a, x) there exist constants $s_1 < s_2 < s_3 < s_4$ such that

$$F(s_1) \ge F(s_2)$$
 and $F(s_3) \le F(s_4)$. (2.8)

(2.7)

In this section we introduce two lemmas which will be used in the proof of the main theorem.

Lemma 2.1 (uniqueness) Let g satisfies (2.6) then the equation (2.2) has at most one solution.

Proof. Let $w_1, w_2 \in H$ are two solutions to (2.2) then

$$\int_{0}^{T} \left[(w_{1} - w_{2})'z' + \frac{c^{2}}{4} (w_{1} - w_{2})z \right] dx \qquad (2.9)$$
$$= \int_{0}^{T} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{1}}{e^{\frac{c}{2}x}} + a) - g(x, \frac{w_{2}}{e^{\frac{c}{2}x}} + a) \right) z \right] dx,$$

for all $z \in H$. We put $z = w_1 - w_2$ in (2.9) and using the assumption (2.6) we get

$$\int_0^T \left((w_1 - w_2)' \right)^2 dx \le \int_0^T \left[c_T (w_1 - w_2)^2 \right] dx \,. \tag{2.10}$$

From (2.10), (2.4) we conclude $w_1 = w_2$.

Lemma 2.2 (continuity) Let $a_n \to a_0$ then a corresponding sequence (w_{a_n}) solutions to the equation (2.2) with $a = a_n$ contains subsequence $(w_{a_{n_k}})$ such that $w_{a_{n_k}} \to w_0$, $w_0 \in H$ and w_0 is a solution to (2.2) with $a = a_0$.

Proof. The solution w_{a_n} to (2.2) satisfies

$$\int_{0}^{T} \left[w_{a_{n}}^{\prime} z^{\prime} + \frac{c^{2}}{4} w_{a_{n}} z \right] dx - \int_{0}^{T} \left[e^{\frac{c}{2}x} g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n}) z - e^{\frac{c}{2}x} fz \right] dx = 0, \qquad (2.11)$$

for all $z \in H$.

We suppose that the sequence (w_{a_n}) is unbounded and we put $v_n = \frac{w_{a_n}}{\|w_{a_n}\|}$. Then there exists $v_0 \in H$ such that $v_n \rightharpoonup v_0$ in H and due to compact embedding H into $C([0, T]) v_n \rightarrow v_0$ in C([0, T]) (taking a subsequence if it is necessary). We divide (2.11) by $\|w_{a_n}\|$ and put $z = v_n$ then

$$\int_{0}^{T} \left[(v_{n}')^{2} + \frac{c^{2}}{4} v_{n}^{2} \right] dx - \int_{0}^{T} \left[\frac{e^{\frac{c}{2}x} g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n}) v_{n}}{\|w_{a_{n}}\|} - \frac{e^{\frac{c}{2}x} fv_{n}}{\|w_{a_{n}}\|} \right] dx = 0.$$
(2.12)

We use inequality $\int_0^T (v'_0)^2 dx \le \liminf_{n \to \infty} \int_0^T (v'_n)^2 dx = 1$ (the weak sequential lower semi-continuity of the Hilbert norm) and pass to the limit in (2.12). According to (2.6), (2.7) we obtain

$$\int_0^T (v_0')^2 \, dx - \int_0^T \left[c_T(v_0)^2 \right] \, dx \le 1 - \int_0^T \left[c_T(v_0)^2 \right] \, dx \le 0 \,,$$

a contradiction to the inequality (2.4).

Therefore the sequence (w_{a_n}) is bounded. Then there exists $w_0 \in H$ such that $w_{a_n} \rightharpoonup w_0$ in H, $w_{a_n} \rightarrow w_0$ in $L^2(0,T)$, C([0,T]) (taking a subsequence if it is necessary).

We put n = m in (2.11) and subtract this equality from (2.11) (with n) we obtain

$$\lim_{m \to \infty} \left\{ \int_0^T \left[(w_{a_n} - w_{a_m})' z' + \frac{c^2}{4} (w_{a_n} - w_{a_m}) z \right] dx$$

$$- \int_0^T \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_n}}{e^{\frac{c}{2}x}} + a_n) - g(x, \frac{w_{a_m}}{e^{\frac{c}{2}x}} + a_m) \right) z \right] dx \right\} = 0.$$
(2.13)

The convergency $w_{a_n} \to w_0$ in C([0,T]), (2.7) and $a_n \to a_0$ yield

$$\lim_{\substack{n \to \infty \\ m \to \infty}} \int_0^T \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_n}}{e^{\frac{c}{2}x}} + a_n) - g(x, \frac{w_{a_m}}{e^{\frac{c}{2}x}} + a_m) \right) \left(w_{a_n} - w_{a_m} \right) \right] dx = 0.$$
(2.14)

We set $z = w_{a_n} - w_{a_m}$ in (2.13) then using (2.14) we get

$$\lim_{\substack{n \to \infty \\ m \to \infty}} \int_0^T \left[(w'_{a_n} - w'_{a_m})^2 + \frac{c^2}{4} (w_{a_n} - w_{a_m})^2 \right] dx = 0.$$
(2.15)

Hence the strong convergence $w_{a_n} \to w_0$ in $L^2(0,T)$ and (2.15) imply the strong convergence $w_{a_n} \to w_0$ in H and we can pass to the limit in (2.11). We obtain

$$\int_{0}^{T} \left[w_{0}'z' + \frac{c^{2}}{4}w_{0}z \right] dx - \int_{0}^{T} \left[e^{\frac{c}{2}x} g(x, \frac{w_{0}}{e^{\frac{c}{2}x}} + a_{0})z - e^{\frac{c}{2}x}fz \right] dx = 0, \qquad (2.16)$$

for all $z \in H$. Hence w_0 is a critical point of J_{a_0} and a solution to (2.2) with $a = a_0$.

Remark 2.1 We have proved that to each $a \in \mathbb{R}$ there exist function $u_a = \frac{w_a}{e^{\frac{c}{2}x}} + a$ such that the $A : \mathbb{R} \to H$, $A(a) = u_a$ is a continuous operator.

3 Main result

Theorem 3.1 Under the assumptions (2.5), (2.6), (2.7), (2.8), Problem (1.1) has at least one solution.

Proof. We prove that J_a is a weakly coercive functional for each $a \in \mathbb{R}$ by a contradiction. Then there is a sequence $(w_n) \subset H$ such that $||w_n|| \to \infty$ and a constant c_2 satisfying

$$\liminf_{n \to \infty} J_a(w_n) \le c_2 \,. \tag{3.1}$$

We put $v_n = \frac{w_n}{\|w_n\|}$ then there exists $v_0 \in H$ such that $v_n \rightharpoonup v_0$ in H, $v_n \rightarrow v_0$ in C([0,T]). We divide (3.1) by $\|w_n\|^2$ then

$$\frac{J_a(w_n)}{\|w_n\|^2} = \frac{1}{2} \int_0^T \left[(v'_n)^2 + \frac{c^2}{4} v_n^2 \right] dx - \int_0^T \left[\frac{e^{cx} G(x, \frac{w_n}{e^{\frac{c}{2}x}} + a)}{\|w_n\|^2} - \frac{e^{\frac{c}{2}x} f}{\|w_n\|} v_n \right] dx \\
\leq \frac{c_2}{\|w_n\|^2}.$$
(3.2)

Due to the assumptions (2.6), (2.7) we have

$$\lim_{n \to \infty} \int_0^T \left[\frac{e^{cx} G(x, \frac{w_n}{e^{\frac{c}{2}x}} + a)}{\|w_n\|^2} \right] dx \le \frac{1}{2} \int_0^T \left[\left(\frac{c^2}{4} + c_T \right) v_0^2 \right] dx \,. \tag{3.3}$$

Using (3.3) and passing to the limit in (3.2) we get

$$\frac{1}{2} \left(\int_0^T \left[(v_0')^2 - c_T (v_0)^2 \right] dx \right) \le \frac{1}{2} \left(1 - \int_0^T c_T (v_0)^2 dx \right) \le 0,$$
(3.4)

a contradiction to the inequality (2.4). Therefore J_a is a weakly coercive functional for each $a \in \mathbb{R}$.

By the standard arguments we can prove that J_a is a weakly sequentially lower semi-continuous functional on H. The weak sequential lower semi-continuity and the weak coercivity of the functional J_a imply (see Struwe [10]) the existence of a critical point w_a of the functional J_a . The usual regularity argument for ODE proves (see Fučík [4]) that w_a is also a solution to (2.2).

Now we prove the existence a classical solution to (1.1).

Let (a_n) be such sequence that $\lim_{n\to\infty} a_n = \infty$ and (w_{a_n}) be a corresponding sequence of the solutions to (2.2) with $a = a_n$. We denote $w_{a_n}^+(x) = \max\{w_{a_n}(x), 0\}$, $w_{a_n}^-(x) = \max\{-w_{a_n}(x), 0\}$ and multiply equation (2.2) by $w_{a_n}^-$. Then, integrating by parts, we have

$$\int_0^T \left[(w_{a_n}^{-\prime})^2 + \frac{c^2}{4} (w_{a_n}^{-})^2 \right] dx = -\int_0^T \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_n}}{e^{\frac{c}{2}x}} + a_n) - f \right) w_{a_n}^{-} \right] dx \,. \tag{3.5}$$

By (2.6) for all $\varepsilon > 0$ there exists $r_0 > 0$ such that $g(x,s) \leq (\frac{c^2}{4} + c_T + \varepsilon)s$ for all $s \geq r_0$ and $-g(x,s) \leq -(\frac{c^2}{4} + c_T + \varepsilon)s$ for all $s \leq -r_0$.

We can suppose that $r_0 \ge s_0$ and estimate by (2.5), (2.6), (2.7)

$$-\int_{e^{\frac{c}{2}x}} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n}) \right) w_{a_{n}}^{-} \right] dx \leq \left(\frac{c^{2}}{4} + c_{T} + \varepsilon \right) \int_{e^{\frac{c}{2}x}} \left[e^{\frac{c}{2}x} \left(-\frac{w_{a_{n}}}{e^{\frac{c}{2}x}} - a_{n} \right) w_{a_{n}}^{-} \right] dx \\
\leq \left(\frac{c^{2}}{4} + c_{T} + \varepsilon \right) \int_{0}^{T} (w_{a_{n}}^{-})^{2} dx , \\
-\int_{0} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n}) \right) w_{a_{n}}^{-} \right] dx \leq \int_{0}^{(2.7)} \int \left[e^{\frac{c}{2}x} \left(c_{1} \Big| \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n} \Big| + q(x) \right) w_{a_{n}}^{-} \right] dx \\
\leq \int_{0}^{T} \left[e^{\frac{c}{2}x} \left(c_{1} r_{0} + q(x) \right) w_{a_{n}}^{-} \right] dx \\
\leq \int_{0}^{T} \left[e^{\frac{c}{2}x} \left(c_{1} r_{0} + q(x) \right) w_{a_{n}}^{-} \right] dx , \\
\int_{0}^{T} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n}) \right) w_{a_{n}}^{-} \right] dx \leq \int_{0}^{T} \left[e^{\frac{c}{2}x} \left(c_{1} r_{0} + q(x) \right) w_{a_{n}}^{-} \right] dx , \\
-\int_{0} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n}) \right) w_{a_{n}}^{-} \right] dx \leq \int_{0}^{T} \left[e^{\frac{c}{2}x} \left(c_{1} r_{0} + q(x) \right) w_{a_{n}}^{-} \right] dx , \\
\int_{0}^{w_{a_{n}} + a_{n} \ge r_{0}} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n} \right) \right) w_{a_{n}}^{-} \right] dx \leq \int_{0}^{T} \left[e^{\frac{c}{2}x} \left(c_{1} r_{0} + q(x) \right) w_{a_{n}}^{-} \right] dx \\
\leq \int_{0}^{T} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n} \right) \right) w_{a_{n}}^{-} \right] dx .$$

Hence there exists $Q \in L^1(0,T)$ such that

$$-\int_{0}^{T} \left[e^{\frac{c}{2}x} \left(g(x, \frac{w_{a_{n}}}{e^{\frac{c}{2}x}} + a_{n}) - f \right) w_{a_{n}}^{-} \right] dx \leq \left(\frac{c^{2}}{4} + c_{T} + \varepsilon \right) \int_{0}^{T} (w_{a_{n}}^{-})^{2} dx + \int_{0}^{T} Q w_{a_{n}}^{-} dx \,.$$

$$(3.7)$$

We take ε such that $\hat{c}_T := c_T + \varepsilon < \left(\frac{\pi}{T}\right)^2$. Consequently, using (3.5), (3.7) we get

$$\left(1 - \frac{\hat{c}_T}{(\frac{\pi}{T})^2}\right) \int_0^T \left[(w_{a_n}^{-\prime})^2 \right] dx \le \int_0^T \left[(w_{a_n}^{-\prime})^2 - \hat{c}_T (w_{a_n}^{-})^2 \right] dx \le \int_0^T \left[Q w_{a_n}^{-} \right] dx.$$
(3.8)

(3.9)

This yields that for $a_n \to \infty$ the sequence $(w_{a_n}^-)$ is bounded in C([0,T]) (due to compact embedding H into C([0,T])). Similarly we obtain that the sequence $(w_{a_n}^+)$ is bounded in C([0,T]) for $a_n \to -\infty$.

Now we denote $u_{a_n} = \frac{w_{a_n}}{e^{\frac{c}{2}x}} + a_n$ then u_{a_n} is a solution to $u''(x) + c u'(x) + g(x, u) = f(x), \quad x \in [0, T],$ $u(0) = u(T) = a_n.$

Since (a_n) was an arbitrary sequence and (w_a^-) is bounded in C([0,T]) therefore $\lim_{a\to\infty} u_a(x) = \infty$ uniformly on [0,T]. Similarly $\lim_{a\to-\infty} u_a(x) = -\infty$ uniformly on [0,T]. We denote

$$F(s) = \int_0^T \int_0^s \left[g(x, u_a(x)) - f(x) \right] \, da \, dx \, .$$

Using Lemma 2.2 we conclude $F \in C(\mathbb{R})$, $F'(s) = \int_0^T [g(x, u_s) - f] dx$. We get by (2.8) (where $u(a, x) = u_a(x)$) that there exist constants $s_1 < s_2 < s_3 < s_4$ such that $F(s_1) \ge F(s_2)$ and $F(s_3) \le F(s_4)$.

Hence there exist a constant $\hat{s} \in \mathbb{R}$ and a solution \hat{u} to (3.9) with $\hat{u}(0) = \hat{u}(T) = \hat{s}$ such that $F'(\hat{s}) = \int_0^T [g(x, \hat{u}) - f] dx = 0$. Integrating (3.9) over [0, T] with $u = \hat{u}$ we obtain $\int_0^T \hat{u}'' dx = 0$. Hence $\hat{u}'(0) = \hat{u}'(T)$ and the function \hat{u} is a solution to the periodic problem (1.1). The proof is completed.

Acknowledgements: This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports.

References

- [1] AMSTER P., Nonlinearities in a second order ODE USA-Chile Workshop on Nonlinear Analysis, Electronic Journal of Differential Equations, Conf. 06, 2001, pp. 13–21.
- [2] DRÁBEK P., INVERNIZZI S., On the periodic BVP for the forced Duffing equation with jumping nonlinearity, Nonlinear Analysis 10 (1986), 643–650.
- [3] DRÁBEK P., LANGEROVÁ M., On the second order periodic problem at resonance with impulses Journal of Mathematical Analysis and Applications, 428(2015) 1339—1353.
- [4] FUČÍK S., Solvability of nonlinear equations and boundary value problems, D. Reidel Publishing Company, Holland 1980.
- [5] HABETS P., Existence of periodic solutions of Duffing equations, Journal of Differential Equations 78 (1989), pp. 1=-32.
- [6] MARIN M., On weak solutions in elasticity of dipolar bodies with voids, Journal of Computational and Applied Mathematics 82 (1997), pp. 291–297.
- [7] MAWHIN J., WARD J.R., Nonuniform nonresonance condition at the two first eigenvalue for periodic solutions of forced Liénard and Duffing equations, Rocky Mountain Journal of Mathematics 12(1982), no.4, pp. 643–654.
- [8] DA SILVA E. D., Quasilinear elliptic problems under strong resonance conditions, Nonlinear Analysis. 73 (2010), no. 8, 2451–2462
- [9] DA SILVA E. D., Resonant elliptic problems under Cerami condition, arXiv:1205.2724.
- [10] STRUWE M., Variational Methods, Springer, Berlin, (1996).
- [11] TOMICZEK P., Forced Duffing equation with a resonance condition Advanced Nonlinear Studies 10 (2010), pp 573–580.
- [12] TOMICZEK P., Periodic problem with a potential Landesman Lazer condition, Hindawi Publishing Corporation Boundary Value Problems (2010), Article ID 586971, 8 pages doi:10.1155/2010/586971.
- [13] TORRES P.J., Existence and Stability of Periodic Solutions of a Duffing Equation by Using a New Maximum Principle, Mediterranean Journal of Mathematics, 1 (2004), 479-–486.

[14] WANG C., Multiplicity of periodic solutions for Duffing equations under nonuniform nonresonance condition, Proceedings of the American Mathematical Society, Vol. 126, No. 6, 1998, pp. 1725–1732.

Current address

Tomiczek Petr, RNDr., CSc.

European Centre of Excellence NTIS – New Technologies for Information Society Department of Mathematics, Faculty of Applied Sciences, University of West Bohemia Technická 8, 306 14 Plzeň, Czech Republic E-mail: tomiczek@kma.zcu.cz