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Abstract. This article is devoted to study the existence of a solution to the periodic nonlinear
second order ordinary differential equation with damping

u′′(x) + c u′(x) + g(x, u) = f(x) , x ∈ [0, T ] ,

u(0) = u(T ) , u′(0) = u′(T ) ,

where c ∈ R , g is a Carathéodory function, f ∈ L1([0, T ]) , a quotient g(x,s)
s lies between 0

and c2

4 + ( πT )
2 and a potential is a non-strictly monotonic function. The technique we use are

variational method and critical point theorem.
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1 Introduction
The aim of this article is to provide new existence results for the nonlinear periodic boundary problem

u′′(x) + c u′(x) + g(x, u) = f(x) , x ∈ [0, T ] ,

u(0) = u(T ) , u′(0) = u′(T ) ,
(1.1)

where c ∈ R , the nonlinearity g : [0, T ]× R→ R is Carathéodory’s function, f ∈ L1([0, T ]).

An equation of this form describes for example a spring–mass system with a damper in parallel; or
the charge on the capacitor in a circuit containing resistance, capacitance, and inductance.

In papers [7], [14] authors used topological degree arguments and supposed that γ(x) ≤ lim inf
|s|→∞

∣∣g(x,s)
s

∣∣
≤ lim sup

|s|→∞

∣∣g(x,s)
s

∣∣ ≤ Γ(x) , Γ(x) ≤
(
2π
T

)2 with the strict inequality on a subset of [0, T ] of positive

measure and γ(x) satisfies
∫ T
0
γ(x) dx ≥ 0 ,

∫ T
0
γ+(x) dx > 0 where γ+(x) = max

x∈[0,T ]
{γ(x), 0} .
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But we obtain the existence result to the equation (1.1) with the nonlinearity g(x, u) = arctanu (it
follows that γ(x) = 0) if the right hand side f satisfies −πT

2
<
∫ T
0
f(x) dx < πT

2
.

Others have studied problem (1.1) with jumping nonlinearities [5], [2] using also topological method.

In this article, we choose another strategy of proof which rely essentially on a variational method
(see also [3], [6], [11]). We will assume that the nonlinearity g satisfies 0 ≤ lim inf

|s|→∞

∣∣g(x,s)
s

∣∣ <
lim sup
|s|→∞

∣∣g(x,s)
s

∣∣ < c2

4
+
(
π
T

)2 and a potential of g is non-strictly monotonic. Precisely, let u = u(a, x),

u : R × [0, T ] → R, u(a, ·) ∈ C[0, T ] for each a ∈ R, u(·, x) ∈ C(R) for each x ∈ [0, T ] such that
lim

a→±∞
u(a, x) = ±∞ uniformly on [0, T ]. We denote

F (s) =

∫ T

0

∫ s

0

[ g(x, u(a, x))− f(x) ] da dx .

We suppose that for such u = u(a, x) there exist constants s1 < s2 < s3 < s4 such that

F (s1) ≥ F (s2) and F (s3) ≤ F (s4) .

We note this assumption is fulfilled if right hand side f satisfies orthogonal condition
∫ T
0
f(x) dx = 0

and g satisfies sign condition g(x, s)s ≥ 0 (Fredholm alternative for a nonlinear equation) . We
generalize Landesman-Lazer type condition (see [2], [12]) for a resonance problems. We get solution
to (1.1) also for strong resonant problem for g satisfying lim

|s|→∞
sg(x, s) = 0 and lim

|s|→∞
F (x, s) = 0,

see [8], [9].

Similarly to [1] we firstly investigate the Dirichlet problem. Then, we apply this result for finding
periodic solutions. In [1] author investigate problem u′′(x) + r(x)u′(x) + g(x, u) = f(x) under a
Lipschitz condition on g. If we rewrite this condition with r(x) = cwe obtain g(x,s)−g(x,t)

s−t ≤ cT where

cT <
(
π
T

)2. We will assume that g(x,s)−g(x,t)
s−t ≤ c2

4
+ cT . Hence the nonlinearity g can also cross the

eigenvalue
(
2π
T

)2 if c2 > 12
(
π
T

)2 .

We note that we can use our approach also to problem with impulses, see [3] and the existence and
stability of periodic solutions to problem (1.1) with f = 0 is discussed in [13].

2 Preliminaries
Notation: We shall use the classical spaceCk(0, T ) of functions whose k-th derivative is continuous
and the space Lp(0, T ) of measurable real-valued functions whose p-th power of the absolute value is
Lebesgue integrable. We denoteH the Sobolev space of absolutely continuous functions u : [0, T ]→

R such that u′ ∈ L2(0, T ) , u(0) = u(T ) = 0 endowed with the norm ‖u‖ =
(∫ T

0
(u′)2 dx

) 1
2

.

By a solution to (1.1) we mean a function u ∈ C1(0, T ) such that u′ is absolutely continuous, u
satisfies the boundary conditions and the equation (1.1) is satisfied a.e. on (0, T ).

Firstly we prove the existence of a solution to the Dirichlet problem

u′′(x) + c u′(x) + g(x, u) = f(x) , x ∈ [0, T ] ,

u(0) = u(T ) = a ,
(2.1)
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where a ∈ R . Then, we apply this result for finding periodic solutions. To obtain an equation with
potential we multiply (2.1) by the function e

c
2
x. Then we put w(x) = e

c
2
x(u(x)− a) and get for w an

equivalent problem

w′′(x)− c2

4
w(x) + e

c
2
x g(x,

w

e
c
2
x

+ a) = e
c
2
x f(x) , (2.2)

w(0) = w(T ) = 0 .

We investigate (2.2) by using variational methods. More precisely, we find a critical point of the
functional Ja : H → R, which is defined by

Ja(w) =
1

2

∫ T

0

[
(w′)2 +

c2

4
w2
]
dx−

∫ T

0

[
ecxG(x,

w

e
c
2
x

+ a)− e
c
2
xfw

]
dx ,

where
G(x, s) =

∫ s

0

g(x, t) dt .

We say that wa is a critical point of Ja, if

〈J ′a(wa), z〉 = 0 for all z ∈ H.

We note

Ja(w + z)− Ja(w) =
1

2

∫ T

0

[
2w′z′ + (z′)2 +

c2

4
(2wz + z2)

]
dx

−
∫ T

0

[
ecx
∫ w+z

e
c
2x

+a

w

e
c
2x

+a

g(x, t) dt− e
c
2
xfz
]
dx ,

and by mean value theorem we get∫ T

0

[
ecx
∫ w+z

e
c
2x

+a

w

e
c
2x

+a

g(x, t) dt] dx =

∫ T

0

[
ecxg(x, ξ(x))

z

e
c
2
x
] dx =

∫ T

0

[
e

c
2
xg(x, ξ(x)) z] dx

where ξ(x) ∈ ( w

e
c
2x + a, w+z

e
c
2x + a).

Therefore every critical point w ∈ H of the functional Ja satisfies∫ T

0

[
w′z′ +

c2

4
wz
]
dx−

∫ T

0

[
e

c
2
xg(x,

w

e
c
2
x

+ a)z − e
c
2
xfz
]
dx = 0 for all z ∈ H, (2.3)

then w is also a weak solution to the Dirichlet problem (2.2) and vice versa. The usual regularity
argument for ODE proves immediately (see Fučík [4]) that any weak solution to (2.2) is also a solution
in the sense mentioned above.

We remark that for any function w ∈ H holds∫ T

0

[
(w′)2 −

(π
T

)2
w2
]
dx ≥ 0 . (2.4)

We will suppose that g satisfies the following growth restrictions.
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There exist functions a+(x), a−(x) ∈ L1(0, π) and a constant s0 ∈ R+ such that for a.e. x ∈ (0, π)

g(x, s) ≤ a−(x) for s ≤ −s0 , g(x, s) ≥ a+(x) for s ≥ s0 , (2.5)

(hence 0 ≤ lim inf
|s|→∞

g(x,s)
s

),

there exists cT <
(π
T

)2
such that

g(x, s)− g(x, t)

s− t
≤ c2

4
+ cT for s, t ∈ R , s 6= t , x ∈ [0, T ] , (2.6)

(hence lim sup
|s|→∞

g(x,s)
s
≤ c2

4
+ cT uniformly on [0, T ]) and there are c1 ∈ R+, q ∈ L1(0, T ) such

that
|g(x, s)| ≤ c1|s|+ q(x) for all s ∈ R , for a. e. x ∈ [0, T ] . (2.7)

Furthermore let u = u(a, x), u : R × [0, T ] → R, u(a, ·) ∈ C[0, T ] for each a ∈ R, u(·, x) ∈ C(R)
for each x ∈ [0, T ] such that lim

a→∞
u(a, x) = +∞ uniformly on [0, T ], lim

a→−∞
u(a, x) = −∞ uniformly

on [0, T ]. We denote

F (s) =

∫ T

0

∫ s

0

[ g(x, u(a, x))− f(x) ] da dx .

We suppose that for such u = u(a, x) there exist constants s1 < s2 < s3 < s4 such that

F (s1) ≥ F (s2) and F (s3) ≤ F (s4) . (2.8)

In this section we introduce two lemmas which will be used in the proof of the main theorem.

Lemma 2.1 (uniqueness) Let g satisfies (2.6) then the equation (2.2) has at most one solution.

Proof. Let w1, w2 ∈ H are two solutions to (2.2) then∫ T

0

[
(w1 − w2)

′z′+
c2

4
(w1 − w2)z

]
dx (2.9)

=

∫ T

0

[
e

c
2
x
(
g(x,

w1

e
c
2
x

+ a)− g(x,
w2

e
c
2
x

+ a)
)
z
]
dx ,

for all z ∈ H . We put z = w1 − w2 in (2.9) and using the assumption (2.6) we get∫ T

0

(
(w1 − w2)

′
)2
dx ≤

∫ T

0

[
cT (w1 − w2)

2
]
dx . (2.10)

From (2.10), (2.4) we conclude w1 = w2 .

Lemma 2.2 (continuity) Let an → a0 then a corresponding sequence (wan) solutions to the equation
(2.2) with a = an contains subsequence (wank

) such that wank
→ w0, w0 ∈ H and w0 is a solution

to (2.2) with a = a0.
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Proof. The solution wan to (2.2) satisfies∫ T

0

[
w′anz

′ +
c2

4
wanz

]
dx−

∫ T

0

[
e

c
2
x g(x,

wan
e

c
2
x

+ an)z − e
c
2
xfz
]
dx = 0 , (2.11)

for all z ∈ H .

We suppose that the sequence (wan) is unbounded and we put vn = wan

‖wan‖
. Then there exists v0 ∈ H

such that vn ⇀ v0 inH and due to compact embeddingH into C([0, T ]) vn → v0 in C([0, T ]) (taking
a subsequence if it is necessary). We divide (2.11) by ‖wan‖ and put z = vn then∫ T

0

[
(v′n)2 +

c2

4
v2n

]
dx−

∫ T

0

[e c
2
x g(x, wan

e
c
2x + an)vn

‖wan‖
− e

c
2
xfvn
‖wan‖

]
dx = 0 . (2.12)

We use inequality
∫ T
0

(v′0)
2 dx ≤ lim inf

n→∞

∫ T
0

(v′n)2 dx = 1 (the weak sequential lower semi-continuity
of the Hilbert norm) and pass to the limit in (2.12). According to (2.6), (2.7) we obtain∫ T

0

(v′0)
2 dx−

∫ T

0

[
cT (v0)

2
]
dx ≤ 1−

∫ T

0

[
cT (v0)

2
]
dx ≤ 0 ,

a contradiction to the inequality (2.4).

Therefore the sequence (wan) is bounded. Then there exists w0 ∈ H such that wan ⇀ w0 in H ,
wan → w0 in L2(0, T ), C([0, T ]) (taking a subsequence if it is necessary).

We put n = m in (2.11) and subtract this equality from (2.11) (with n) we obtain

lim n→∞
m→∞

{∫ T

0

[
(wan − wam)′z′ +

c2

4
(wan − wam) z

]
dx (2.13)

−
∫ T

0

[
e

c
2
x
(
g(x,

wan
e

c
2
x

+ an)− g(x,
wam
e

c
2
x

+ am)
)
z
]
dx

}
= 0 .

The convergency wan → w0 in C([0, T ]), (2.7) and an → a0 yield

lim
n→∞
m→∞

∫ T

0

[
e

c
2
x
(
g(x,

wan
e

c
2
x

+ an)− g(x,
wam
e

c
2
x

+ am)
) (
wan − wam

) ]
dx = 0 . (2.14)

We set z = wan − wam in (2.13) then using (2.14) we get

lim
n→∞
m→∞

∫ T

0

[
(w′an − w

′
am)2 +

c2

4
(wan − wam)2

]
dx = 0 . (2.15)

Hence the strong convergence wan → w0 in L2(0, T ) and (2.15) imply the strong convergence wan →
w0 in H and we can pass to the limit in (2.11). We obtain∫ T

0

[
w′0z

′ +
c2

4
w0z

]
dx−

∫ T

0

[
e

c
2
x g(x,

w0

e
c
2
x

+ a0)z − e
c
2
xfz
]
dx = 0 , (2.16)

for all z ∈ H . Hence w0 is a critical point of Ja0 and a solution to (2.2) with a = a0.

Remark 2.1 We have proved that to each a ∈ R there exist function ua = wa

e
c
2x + a such that the

A : R→ H , A(a) = ua is a continuous operator.
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3 Main result

Theorem 3.1 Under the assumptions (2.5), (2.6), (2.7), (2.8), Problem (1.1) has at least one solution.

Proof. We prove that Ja is a weakly coercive functional for each a∈R by a contradiction. Then there
is a sequence (wn)⊂H such that ‖wn‖ → ∞ and a constant c2 satisfying

lim inf
n→∞

Ja(wn) ≤ c2 . (3.1)

We put vn = wn

‖wn‖ then there exists v0 ∈ H such that vn ⇀ v0 in H , vn → v0 in C([0, T ]) . We divide
(3.1) by ‖wn‖2 then

Ja(wn)

‖wn‖2
=

1

2

∫ T

0

[
(v′n)2 +

c2

4
v2n

]
dx−

∫ T

0

[ecxG(x, wn

e
c
2x + a)

‖wn‖2
− e

c
2
xf

‖wn‖
vn

]
dx

≤ c2
‖wn‖2

. (3.2)

Due to the assumptions (2.6), (2.7) we have

lim
n→∞

∫ T

0

[ecxG(x, wn

e
c
2x + a)

‖wn‖2
]
dx ≤ 1

2

∫ T

0

[(c2
4

+ cT

)
v20

]
dx . (3.3)

Using (3.3) and passing to the limit in (3.2) we get

1

2

(∫ T

0

[
(v′0)

2 − cT (v0)
2
]
dx
)
≤ 1

2

(
1−

∫ T

0

cT (v0)
2 dx

)
≤ 0 , (3.4)

a contradiction to the inequality (2.4). Therefore Ja is a weakly coercive functional for each a ∈ R .

By the standard arguments we can prove that Ja is a weakly sequentially lower semi-continuous func-
tional on H . The weak sequential lower semi-continuity and the weak coercivity of the functional Ja
imply (see Struwe [10]) the existence of a critical point wa of the functional Ja. The usual regularity
argument for ODE proves (see Fučík [4]) that wa is also a solution to (2.2).

Now we prove the existence a classical solution to (1.1).

Let (an) be such sequence that lim
n→∞

an=∞ and (wan) be a corresponding sequence of the solutions

to (2.2) with a = an . We denote w+
an(x) = max{wan(x), 0} , w−an(x) = max{−wan(x), 0} and

multiply equation (2.2) by w−an . Then, integrating by parts, we have

∫ T

0

[
(w−an

′
)2 +

c2

4
(w−an)2

]
dx = −

∫ T

0

[
e

c
2
x (g(x,

wan
e

c
2
x

+ an)− f)w−an

]
dx . (3.5)

By (2.6) for all ε > 0 there exists r0 > 0 such that g(x, s) ≤ ( c
2

4
+ cT + ε)s for all s ≥ r0 and

−g(x, s) ≤ −( c
2

4
+ cT + ε)s for all s ≤ −r0 .
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We can suppose that r0 ≥ s0 and estimate by (2.5), (2.6), (2.7)

−
∫

wan

e
c
2x

+an≤−r0

[
e

c
2
x
(
g(x,

wan
e

c
2
x

+ an)
)
w−an

]
dx

(2.6)

≤
(c2

4
+ cT + ε

) ∫
wan

e
c
2x

+an≤−r0

[
e

c
2
x
(
−wan
e

c
2
x
− an

)
w−an

]
dx

≤
(c2

4
+ cT + ε

) T∫
0

(w−an)2 dx ,

−
∫

∣∣wan

e
c
2x

+an

∣∣≤r0
[
e

c
2
x
(
g(x,

wan
e

c
2
x

+ an)
)
w−an

]
dx

(2.7)

≤
∫

∣∣wan

e
c
2x

+an

∣∣≤r0
[
e

c
2
x
(
c1

∣∣∣wan
e

c
2
x

+ an

∣∣∣+ q(x)
)
w−an

]
dx

≤
T∫

0

[ e
c
2
x(c1r0 + q(x))w−an ] dx ,

−
∫

wan

e
c
2x

+an≥r0

[
e

c
2
x
(
g(x,

wan
e

c
2
x

+ an)
)
w−an

]
dx

(2.5)

≤
∫

wan

e
c
2x

+an≥r0

[
e

c
2
x(−a+(x))w−an

]
dx

≤
T∫

0

[
e

c
2
x|a+(x)|w−an

]
dx .

(3.6)

Hence there exists Q ∈ L1(0, T ) such that

−
∫ T

0

[
e

c
2
x
(
g(x,

wan
e

c
2
x

+ an)− f
)
w−an

]
dx ≤

(c2
4

+ cT + ε
)∫ T

0

(w−an)2 dx+

∫ T

0

Qw−an dx .

(3.7)

We take ε such that ĉT := cT + ε <
(π
T

)2. Consequently, using (3.5), (3.7) we get(
1− ĉT

( π
T

)2

)∫ T

0

[
(w−an

′
)2
]
dx ≤

∫ T

0

[
(w−an

′
)2 − ĉT (w−an)2

]
dx ≤

∫ T

0

[
Qw−an

]
dx . (3.8)

This yields that for an →∞ the sequence (w−an) is bounded in C([0, T ]) (due to compact embedding
H into C([0, T ])) . Similarly we obtain that the sequence (w+

an) is bounded in C([0, T ]) for an →
−∞ .

Now we denote uan =
wan
e

c
2
x

+ an then uan is a solution to

u′′(x) + c u′(x) + g(x, u) = f(x) , x ∈ [0, T ] ,

u(0) = u(T ) = an .
(3.9)

Since (an) was an arbitrary sequence and (w−a ) is bounded in C([0, T ]) therefore lim
a→∞

ua(x) = ∞
uniformly on [0, T ] . Similarly lim

a→−∞
ua(x) = −∞ uniformly on [0, T ] .

1013



We denote

F (s) =

∫ T

0

∫ s

0

[ g(x, ua(x))− f(x) ] da dx .

Using Lemma 2.2 we conclude F ∈ C(R), F ′(s) =

∫ T

0

[ g(x, us)− f ] dx . We get by (2.8) (where

u(a, x) = ua(x)) that there exist constants s1 < s2 < s3 < s4 such that F (s1) ≥ F (s2) and
F (s3) ≤ F (s4) .

Hence there exist a constant ŝ ∈ R and a solution û to (3.9) with û(0) = û(T ) = ŝ such that

F ′(ŝ) =

∫ T

0

[ g(x, û)− f ] dx = 0 . Integrating (3.9) over [0, T ] with u = ûwe obtain
∫ T

0

û′′ dx = 0.

Hence û′(0) = û′(T ) and the function û is a solution to the periodic problem (1.1). The proof is
completed.
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