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Abstract. Knowledge of an interaction range in particle systems, especially in vehicular 
traffic could significantly contribute to  modeling of  traffic flow . Combination of simulation 
methods, analytical predictions of headway distribution, and correlation analysis led to several 
remarkable observations. We observe, that interaction range depends on both resistivity and 
type of repulsive potential. Moreover we introduce a novel method for detection of number of 
actively followed vehicles based on perturbation function.
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1 Introduction
Increasing traffic demand requires finding either numerical or theoretical models, capable to predict
traffic scenarios such as traffic congestions. Recent studies and observations (e.g. [3], [5], [7], [8])
suggest that generally used premise on a short range of traffic interactions do not correspond to traffic
reality. However, most traffic models [1], discrete as well as continuous presume that behavior and
decision making of a driver is influenced by neighboring vehicles only. By means of correlation
analysis we try to determine interaction range with restriction to fast lane and congested traffic phase,
with intention to avoid overtaking and transitions between free and congested traffic phases. Moreover
we aim to show that interaction range depends on quantities like traffic flow, traffic density or velocity
and that correlation between traffic density and velocity plays a role in vehicular data. Further we
suggest novel approach for detection of number of actively followed vehicles based on perturbation
convolution function.

2 Data-sets and Processing
The used data-sets were provided by the Road and Motorway Directorate of the Czech Republic at the
Expressway R1 in Prague, the Czech Republic. Data records contain single vehicle data recorded by
double-loop detectors positioned under the expressway R1. For purposes of this research only fast-
lane data have been taken into account. Following reasons lead us to this restriction. Firstly, very low
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proportion of long vehicles such as lorries or trucks and slow cars is present and more importantly,
vehicles in fast lane cannot be overtaken, which could significantly influence traffic flow, especially
in a transition phase between free flow and congested flow, when synchronization between lanes may
occur. Measured microscopic quantities have been suited into a set of the form

Sj =
{

(τ
(in)
k , τ

(out)
k , vk) ∈ T (in) × T (out) × V | k = (j − 1)m+ 1, (j − 1)m+ 2, . . . , jm

}
, (1)

where j ∈ M =
⌊
N
m

⌋
, m = 50 is the fixed sampling size and N = #

{
τ
(in)
k | k

}
. Sets T (in) and

T (out) are defined as follows.

T (in) =
{
τ
(in)
k ∈ R+

0 | k = 1, 2, . . . , N
}

includes the chronologically-ordered times when the front bumper of k-th car has intersected the
detector line. Respectively

T (out) =
{
τ
(out)
k ∈ R+

0 | k = 1, 2, . . . , N
}

includes the chronologically-ordered times when the rear bumper of k-th car has left the detector.
Velocities of succeeding vehicles have been suited into a set

V =
{
vk ∈ R+

0 | k = 1, 2, . . . , N
}
,

where vk is a velocity of the k-th vehicle. For each sub-sample Sj , where j = 1, 2, . . . ,m, macro-
scopic quantity such as local flux (intensity)

Qj =
m

τ
(out)
jm − τ (in)(j−1)m+1

, (2)

representing number of vehicles passing the detector per fixed time interval (most commonly 1 hour)
or average velocity

v̄j =
1

m

jm∑
k=(j−1)m+1

vk (3)

can be calculated. These quantities can be further used to determine another macroscopic quantity,
local vehicular density

ρj =
Qj

v̄j
, (4)

Which can be presented as number of vehicles passing the detector per fixed space unit (most com-
monly 1 km). Subsequently, time-clearances are scaled to sample-means equal to one and they are
defined by[5]

tk =
m
(
τ
(in)
k − τ (out)k

)
∑dk/mem

i=(dk/me−1)m+1 τ
(in)
i −

∑dk/mem
i=(dk/me−1)m+1 τ

(out)
i

. (5)

We will profit from this re-scaling procedure when comparing empirical headway distributions to
theoretical predictions having an estimated value equal to one.
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At the very beggining we assume that in regions of congested traffic the interactions are more intense
than in a free flow phase (which is meaningful premise), in which drivers are driving at their desired
speed with desired time clearances. Earlier studies [10] show that both velocities correlations and
time clearance correlations depend on traffic flow as well as on the traffic density. Moreover we
would like to eliminate mixing of different traffic phases. Therefore we perform segmentation by
local density ρ and flux Q (according to [4], [5]).

3 Segmentation of vehicular data by density and velocity
Study of the interaction range will be carried out separately for each flux-density region/window
summarized in table 1 as in [11].

w ρmin [veh.km−1] ρmax [veh.km−1] Qmin [veh.h−1] Qmax [veh.h−1] βlog
w βhyp

w

1 25 30 500 2000 1.50 0.35
2 30 35 500 2500 2.55 0.95
3 35 40 500 3000 2.65 1.00
4 40 45 500 3000 3.15 1.30
5 45 50 500 3000 3.40 1.45
6 50 55 500 2500 3.65 1.60
7 55 60 500 2500 3.60 1.60
8 60 65 500 2500 4.50 1.90

Tab. 1. Basic information on the vehicular data used.

We also perform segmentation by velocity regions. Study of the interaction range will be carried out
separately for each velocity region summarized in Tab. 2.

w v̄j,min [km.h−1] v̄j,max [km.h−1] βlog
w βhyp

w

1 20 30 2.90 1.45
2 30 35 3.50 1.35
3 35 40 3.75 1.50
4 40 45 3.25 1.35
5 45 50 3.00 1.35
6 50 55 3.80 1.25
7 55 60 2.90 1.15
8 60 70 2.45 0.95

Tab. 2. Basic information on the vehicular data used.

Basic insight into vehicular interactions can be obtained by means of correlation analysis. Two ap-
proaches have been considered. Pearson’s correlation coefficient however disposes disadvantage that
can obtain even negative values implying anti-correlation and more importantly zero value does not
imply statistical independence. Brownian correlation coefficient [9] does not suffer from these short-
comings as has been proven in [9].

Definition 1 Let X, Y denote random vectors with finite second moments. Then Brownian distance
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correlation RB(X, Y ) is defined by

R2
B(X, Y )


V 2
n (X, Y )√

V 2
n (X)V 2

n (Y )
, V 2

n (X)V 2
n (Y ) > 0;

0, V 2
n (X)V 2

n (Y ) = 0,

(6)

where Vn(X, Y ) denotes distance covariance and Vn(X),Vn(Y ) represent the associated variances.

However, this type of correlation coefficient also comes with deficiencies, such as strongly correlated
variables are not causatively linked. Since, we will not be dealing with strongly correlated variables
as was observed in [10], we will dismiss this disadvantage. From the definition of the brownian
correlation coefficient it is clear that we will be working with vectors of random variables. Therefore
we define

Xw := {xw1 , xw2 , . . . , xw` } (7)

and
X(n)
w := {xw1+n, xw2+n, . . . , xw`+n | n ∈ N}, (8)

Which are the sets of chronologically ordered individual clearances associated to thew-th flux-density
window. Now we can proceed to evaluation of Brownian correlation coefficient RB(Xw, X

(n)
w ) with

respect to number of separating vehicles. It follows from Fig. 1 that values of distance-correlation
coefficient are mostly decreasing with n in all density regions as well as in all velocity regions.
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Fig. 1. rownian distance-correlation of clearances in different density regions
(see figure (a)) and velocity regions (see figure (b)).

Strongest correlation is detected for n = 1, means that clearances between neighboring vehicles are
more strongly correlated compared to clearances measured between more distant vehicles (as in [3]).
This is true especially in case of segmentation by density. Moreover, the lower the velocity, the hire
the correlations are. As expected, when one finds himself in a strongly congested traffic, drivers
are driving bumper to bumper, which generates strong correlation between clearances. On the con-
trary, when driving in a free phase, drivers tend to maintain desired gap to their predecessors, which
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corresponds to very little synchronization and therefore very little correlation between clearances.
The isolated application of distance-correlations of clearances is as understandable ineffective for
purposes of interaction range estimation. Therefore we focus our attention to the generalized local
thermodynamic model allowing middle-ranged interactions. Main characteristics of the model are
statistical resistivity β and thermodynamic potential. Short-ranged version of this model applying
hyperbolic potential has been solved in [4]. One of the main results of the article is determination of
the respective headway distribution, which reads

p(x) = Θ(x)Ae−
β
x e−Dx, (9)

where

D = β +
3−
√
β

2
, (10)

A =

(
2

√
β

D
K1(2

√
βD)

)−1
. (11)

Here Θ(x) stands for Heaviside unit-step function and Kν(x) for Macdonald’s function of the ν-th
order. Analogously in article [4] has been determined a headway distribution for the thermodynamic
model with short-ranged logarithmic potential, which reads

η(x) = Θ(x)
(β + 1)β+1

Γ(β + 1)
xβe−(β+1)x. (12)

Empirical values of resistivity β summarized in table 1 (columns 6 and 7) have been determined by
means of MDE (minimum distance estimator)

βhw := argminβ∈[0,∞)

∫ ∞
0

∣∣∣Hw(x)−Θ(x)A(β)e−
β
x e−D(β)x

∣∣∣ dx,
βlogw := argminβ∈[0,∞)

∫ ∞
0

∣∣∣∣Hw(x)−Θ(x)
(β + 1)β+1

Γ(β + 1)
xβe−(β+1)x

∣∣∣∣ dx,
minimizing the statistical distance between theoretical prediction (9), (12) and histogram function
Hw(x), respectively. Steady states of the model with middle-ranged hyperbolic potential are not an-
alytically calculated at the moment for any value of resistivity β. In contrast, steady states have been
determined for model with middle-ranged logarithmic potential and specific values of resistivity β in
[2] and [12]. However, numerical representation allows obtaining all the steady-distributions. Out-
put of the model is vector of steady-state headways/clearances/distances (these terms are equivalent
because particles are dimensionless) with average value equal to one

X = (x1, x2, . . . , xN),

where number of particles is equal to length of the circle N = L. Simultaneously, we define vector

Xn = (xn+1, xn+2, . . . , xn+N),

where n denotes number of particles lying between considered particles. For fixed interaction range
and stochastic resistivity one can calculate Brownian distance-correlation coefficient Rn

B(X,Xn). In
Fig. 2 values of correlation coefficients Rn

B(X,X1) are plotted with respect to interaction range k ∈
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{1, 2, 3, 4, 5, 6} and resistivity β for both hyperbolic and logarithmic potential, respectively. Beside
case k = 1 yielding statistical independence among neighboring headways, one can detect values of
distance-correlation coefficient increasing with the statistical resistivity. To estimate an interaction
range, we plot empirical values of statistical resistivity βhw, β

log
w into these diagrams respectively and

search for the closest correlation curve. To eliminate fluctuations, we use polynomial interpolation of
correlation curves.

(a) (b)

Fig. 2. Curves represent polynomial interpolations of distance-correlation
coefficient. Black bullets represent empirical values of Brownian correlation

coefficient obtained by MDE for hyperbolic potential (a) and logarithmic
potential (b).

It is apparent that interaction range for both logarithmic and hyperbolic potential depends on traffic
density. We can summarize that with increasing traffic density (in this case, with increasing statistical
resistivity β) interaction range decreases, since correlation drops. In both cases, however, interaction
is a middle-ranged in all density regions. Interaction is stronger when using hyperbolic potential.
Eventhough we performed several restrictions (only fast lane data from congested phase were used
omitting transition phases), we still can not guarantee homogeneity of velocities in each flux-density
window. At this point it is convenient to study interactions with respect to velocities.

We use the same approach as for segmentation by velocities. Empirical values of resistivity β (sum-
marized in Tab. 2) have been determined by means of MDE. Similarly to previous section we plot
interpolated correlation curves and empirical values of stochastic resistivity in one diagram for both
hyperbolic and logarithmic potential (see Fig. 3). In both cases with increasing resistivity, distance-
correlation coefficients are increasing. It is also visible that all interactions are middle-ranged, as in
the previous section.

4 Perturbation function
At this point it is essential to define multi-clearances of the order µ ∈ N as follows

xk | µ = xk + xk−1 + · · ·+ xk−µ. (13)

If the interactions in the system are short-ranged only, then random variables x | µ1 and x | µ2,
where µ1 6= µ2 are independent and the distribution of clearances among µ + 2 particles is given by
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(a) (b)

Fig. 3. Curves represent polynomial interpolations of distance-correlation
coefficient. Black bullets represent empirical values of Brownian correlation

coefficient obtained by MDE for hyperbolic potential (a) and logarithmic
potential (b).

convolution formula

ρ(x | µ) = ρ(x) ? ρ(x | µ− 1) ≡
∫
R
ρ(s)ρ(x− s | µ− 1)ds. (14)

Unfortunately, this formula holds true only for ensembles with short-ranged forces only. Therefore
we introduce two-parametric family of probability densities defined in [6]

p(x) = Θ(x)Axαe−
β
x e−Dx, (15)

where

D =
α

µ
+
β

µ2
+

3− e
−
√
β
µ

2µ
, (16)

A =

(
2

√
β

D
Kα+1(2

√
βD)

)−1
. (17)

Here Θ(x) stands for Heaviside unit-step function and Kν(x) for Macdonald’s function of the ν-th
order. To estimate the parameter α, β we use MDE method (Minimum Distance Estimator) given by
formula

(α̂, β̂) := argmin(α,β)∈Cσ

(∫
R
| H(x | µ)− ρ̂(x | µ) |2 dx

)1/2

(18)

Cσ =

{
(α, β) ∈ Ω :

∫ ∞
0

x2ρ(x | (α, β))dx = µ2 + σ2

}
, (19)

where H(x | µ) is histogram function (distribution of clearances given by Metropolis-Hastings algo-
rithm) and ρ̂(x | µ) is MDE-estimation. In Fig. 4 we plot estimated values of parameters α̂, β̂ with
respect to degree of multi-clearance. We conclude, that with increasing degree of multi-clearance one
obtains increasing values of parameters α̂, β̂.
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Fig. 4. Estimated values of parameters α̂, β̂ with respect to degree of
multi-clearance for different interactions, starting with short-ranged interaction

(lowest plane) and increasing up to interaction of 7 vehicles (upper plane).

Further we would like to introduce a method for detection of interaction range. As we mentioned
before, we can use a convolution rule for estimation of probability density ρ(x | µ), (µ 6= 1) if
random variables x and x | µ − 1 are statisticaly independent. Therefore we introduce perturbation
function

ψ(x | µ) =

∫ x

0

(ρ̂(y | µ)− ρ̂(y | 1) ? ρ̂(y | µ− 1))dy, (20)

which is used for testing statistical independence of different multi-clearances. Courses of perturba-
tion functions for different values of stochastic resistivity β, interaction range and degree of multi-
clearance are shown in Fig. 5.

It is desired to study how the perturbation function ψ(x | µ) deviates from zero value. For intentions
of this quantification we use Kolmogorov distance defined by formula

G(µ) = supx∈R | ψ(x | µ) | . (21)

Course of Kolmogorov distance with respect to interaction range, resistivity β and degree of multi
clearance is shown on Fig. 6. Values of Kolmogorov distance are low for all interaction ranges and the
associated neighboring planes are very close to each other. Kolmogorov distance planes have been
created by means of simulation method (Metropolis-Hastings algorithm). Now question arises how
precisely we are able to determine course of this planes. In Fig. 7(a) it is shown Kolmogorov distance
plane with error bars for model with middle-ranged interaction (interaction of 5 vehicles) and in Fig. 7
(b) it is shown Kolmogorov distance plane with error bars for model with middle-ranged interaction
(interaction of 5,6,7 vehicles, respectively). Since the upper error bar is intersecting Kolmogorov
distance plane for interaction of 7 vehicles, at this point we would not be able to determine a range of
interaction. Unambigously, this is true only for planes with interaction of more than 6 vehicles. For
lower interaction the error bars are not intersecting neighboring distance planes.
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Fig. 5. Courses of perturbation functions for different values of stochastic
resistivity β, interaction range and degree of multi-clearance.

Fig. 6. Courses of Kolmogorov distance of perturbation function with respect to
stochastic resistivity β, interaction range and degree of multi-clearance.

5 Conclusion
Main task of this paper was to estimate a number of actively followed vehicles by means of Brownian
distance-correlation coefficients and numerical data obtained from simulations of one-dimensional
particle gas with both middle-ranged hyperbolic and logarithmic potential. Segmentation of the em-
pirical vehicular data by density and velocity has been performed. These separations lead to con-
tradictory results. When segmentation by local density was used, we observed that with increasing
stochastic resistivity, correlations were decreasing. On the contrary, segmentation by velocities lead
to increasing correlations with increasing stochastic resistivity. This means, that either one of the seg-
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Fig. 7. Course of Kolmogorov distance plane with error bars (transparent planes)
for interaction of 5 vehicles (a) and course of Kolmogorov distance plane with
error bars (red planes) for interaction of 5,6,7 vehicles respectively from down

to up (b).

mentation methods is not appropriate or that a correlation between velocities and densities is present.
Despite the contradictory results, we observe that in both cases the interactions are at least middle-
ranged.

Method based on perturbation function needs to be tested and validated on empirical data. From
simulations it is obvious so far, that for higher interaction range, Kolmogorov distance planes are
too close to each other and therefore it will be difficult to determine precise interaction range (if
it comes to high order interactions). On the other hand, it should not be difficult to determine at
least character of interactions (short ranged, middle ranged), since Kolmogorov distance plane for
short-range interaction is far from the rest of the planes derived for middle-ranged interactions (for
µ > 1).
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