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Abstract. The crossing number cr(G) of a graph G is the minimal number of edge crossings 
over all drawings of G in the plane. In the paper, we extend known results concerning 
crossing numbers for join of graphs of order six. We give the crossing number of the join 
product G + Dn, where the graph G consists of one 4-cycle and two leaves, and Dn consists 
on n isolated vertices. The proof is done with the help of software that generates all cyclic 
permutations for a given number k, and creates a graph for a calculating the distances between 
all (k − 1)! vertices of the graph. Finally, by adding some edges to the graph G, we are able to 
obtain the crossing numbers of the join product with the discrete graph Dn for other graphs.
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1 Introduction
Let G be a simple graph with the vertex set V and the edge set E. A drawing of the graph G
is a representation of G in the plane such that its vertices are represented by distinct points and
its edges by simple continuous arcs connecting the corresponding point pairs. In such a drawing,
the intersection of the interiors of the arcs is called a crossing. A drawing is good if each two edges
have at most one point in common, which is either a common end-vertex or a crossing. Moreover,
no three edges cross in a point. It is easy to see that a drawing with minimum number of crossings
(an optimal drawing) is always a good drawing. The crossing number cr(G) of a simple graph G is
defined as the minimum possible number of edge crossings in a good drawing of G in the plane. Let
G1 and G2 be simple graphs with vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2),
respectively. The join product of two graphs G1 and G2, denoted by G1 + G2, is obtained from the
vertex-disjoint copies of G1 and G2 by adding all edges between V (G1) and V (G2). For |V (G1)| = m
and |V (G2)| = n, the edge set of G1 + G2 is the union of disjoint edge sets of the graphs G1, G2,
and the complete bipartite graph Km,n. Let D (D(G)) be a good drawing of the graph G. We denote
the number of crossings in D by crD(G).
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Let Gi and Gj be edge-disjoint subgraphs of G. We denote the number of crossings between edges of
Gi and edges of Gj by crD(Gi, Gj), and the number of crossings among edges of Gi in D by crD(Gi).
In the paper, some proofs are based on the Kleitman’s result on crossing numbers of the complete
bipartite graphs [12]. More precisely, he proved that

cr(Km,n) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if min{m,n} ≤ 6.

2 The crossing number of G+Dn

1

2

3 4

5

6
(a) (b)

Fig. 1. Drawing of the graph G with the vertex notation and the graph G+D2.

In the paper, we extent these results [4], [6], [7], [9], [10], [11] for another four graphs. Let G be
the graph consisting of one 4-cycle and of two leaves. We consider the join product of G with the
discrete graph on n vertices denoted by Dn. The graph G +Dn consists of one copy of the graph G
and of n vertices t1, t2, . . . , tn, where any vertex ti, i = 1, 2, . . . , n, is adjacent to every vertex of G.
Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident with the vertex ti. Thus,
T 1 ∪ · · · ∪ T n is isomorphic with the complete bipartite graph K6,n and

G+Dn = G ∪K6,n = G ∪

(
n⋃

i=1

T i

)
. (1)

2.1 Cyclic permutations and configurations

Let D be a good drawing of the graph G+Dn. The rotation rotD(ti) of a vertex ti in the drawing D
is the cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave ti,
see [3]. We emphasize that a rotation is a cyclic permutation. Hence, for i, j ∈ {1, 2, . . . , n}, i 6= j,
every subgraph T i ∪ T j of the graph G+Dn is isomorphic with the graph K6,2. In the paper, we will
deal with the minimum necessary number of crossings between the edges of T i and the edges of T j

in a subgraph T i ∪ T j induced by the drawing D of the graph G + Dn depending on the rotations
rotD(ti) and rotD(tj).

Let D be a good drawing of the graph K6,n. Woodall [13] proved that in the subdrawing of T i∪T j ∼=
K6,2 induced by D, crD(T i, T j) ≥ 6 if rotD(ti) = rotD(tj). Moreover, if Q(rotD(ti), rotD(tj))
denotes the minimum number of interchanges of adjacent elements of rotD(ti) required to produce
the inverse cyclic permutation of rotD(tj), then Q(rotD(ti), rotD(tj)) ≤ crD(T

i, T j). We will separate
the subgraphs T i, i = 1, . . . , n, of the graph G + Dn into three subsets depending on haw many
the considered T i crosses the edges of G in D. For i = 1, 2, . . . , n, let RD = {T i : crD(G, T i) = 0}
and SD = {T i : crD(G, T i) = 1}. Every other subgraph T i crosses G at least twice in D. Moreover,
let F i denote the subgraph G ∪ T i for T i ∈ RD, where i ∈ {1, . . . , n}. Thus, for a given drawing of
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Name Cyclic perm. Name Cyclic perm. Name Cyclic perm. Name Cyclic perm.
P1→ (1 2 3 4 5 6) P31→ (1 2 3 6 4 5) P61→ (1 2 5 6 3 4) P91→ (1 4 5 6 2 3)
P2→ (1 3 2 4 5 6) P32→ (1 3 2 6 4 5) P62→ (1 5 2 6 3 4) P92→ (1 5 4 6 2 3)
P3→ (1 2 4 3 5 6) P33→ (1 2 6 3 4 5) P63→ (1 2 6 5 3 4) P93→ (1 4 6 5 2 3)
P4→ (1 4 2 3 5 6) P34→ (1 6 2 3 4 5) P64→ (1 6 2 5 3 4) P94→ (1 6 4 5 2 3)
P5→ (1 3 4 2 5 6) P35→ (1 3 6 2 4 5) P65→ (1 5 6 2 3 4) P95→ (1 5 6 4 2 3)
P6→ (1 4 3 2 5 6) P36→ (1 6 3 2 4 5) P66→ (1 6 5 2 3 4) P96→ (1 6 5 4 2 3)
P7→ (1 2 3 5 4 6) P37→ (1 2 4 6 3 5) P67→ (1 3 5 6 2 4) P97→ (1 3 4 5 6 2)
P8→ (1 3 2 5 4 6) P38→ (1 4 2 6 3 5) P68→ (1 5 3 6 2 4) P98→ (1 4 3 5 6 2)
P9→ (1 2 5 3 4 6) P39→ (1 2 6 4 3 5) P69→ (1 3 6 5 2 4) P99→ (1 3 5 4 6 2)
P10→ (1 5 2 3 4 6) P40→ (1 6 2 4 3 5) P70→ (1 6 3 5 2 4) P100→ (1 5 3 4 6 2)
P11→ (1 3 5 2 4 6) P41→ (1 4 6 2 3 5) P71→ (1 5 6 3 2 4) P101→ (1 4 5 3 6 2)
P12→ (1 5 3 2 4 6) P42→ (1 6 4 2 3 5) P72→ (1 6 5 3 2 4) P102→ (1 5 4 3 6 2)
P13→ (1 2 4 5 3 6) P43→ (1 3 4 6 2 5) P73→ (1 2 4 5 6 3) P103→ (1 3 4 6 5 2)
P14→ (1 4 2 5 3 6) P44→ (1 4 3 6 2 5) P74→ (1 4 2 5 6 3) P104→ (1 4 3 6 5 2)
P15→ (1 2 5 4 3 6) P45→ (1 3 6 4 2 5) P75→ (1 2 5 4 6 3) P105→ (1 3 6 4 5 2)
P16→ (1 5 2 4 3 6) P46→ (1 6 3 4 2 5) P76→ (1 5 2 4 6 3) P106→ (1 6 3 4 5 2)
P17→ (1 4 5 2 3 6) P47→ (1 4 6 3 2 5) P77→ (1 4 5 2 6 3) P107→ (1 4 6 3 5 2)
P18→ (1 5 4 2 3 6) P48→ (1 6 4 3 2 5) P78→ (1 5 4 2 6 3) P108→ (1 6 4 3 5 2)
P19→ (1 3 4 5 2 6) P49→ (1 2 3 5 6 4) P79→ (1 2 4 6 5 3) P109→ (1 3 5 6 4 2)
P20→ (1 4 3 5 2 6) P50→ (1 3 2 5 6 4) P80→ (1 4 2 6 5 3) P110→ (1 5 3 6 4 2)
P21→ (1 3 5 4 2 6) P51→ (1 2 5 3 6 4) P81→ (1 2 6 4 5 3) P111→ (1 3 6 5 4 2)
P22→ (1 5 3 4 2 6) P52→ (1 5 2 3 6 4) P82→ (1 6 2 4 5 3) P112→ (1 6 3 5 4 2)
P23→ (1 4 5 3 2 6) P53→ (1 3 5 2 6 4) P83→ (1 4 6 2 5 3) P113→ (1 5 6 3 4 2)
P24→ (1 5 4 3 2 6) P54→ (1 5 3 2 6 4) P84→ (1 6 4 2 5 3) P114→ (1 6 5 3 4 2)
P25→ (1 2 3 4 6 5) P55→ (1 2 3 6 5 4) P85→ (1 2 5 6 4 3) P115→ (1 4 5 6 3 2)
P26→ (1 3 2 4 6 5) P56→ (1 3 2 6 5 4) P86→ (1 5 2 6 4 3) P116→ (1 5 4 6 3 2)
P27→ (1 2 4 3 6 5) P57→ (1 2 6 3 5 4) P87→ (1 2 6 5 4 3) P117→ (1 4 6 5 3 2)
P28→ (1 4 2 3 6 5) P58→ (1 6 2 3 5 4) P88→ (1 6 2 5 4 3) P118→ (1 6 4 5 3 2)
P29→ (1 3 4 2 6 5) P59→ (1 3 6 2 5 4) P89→ (1 5 6 2 4 3) P119→ (1 5 6 4 3 2)
P30→ (1 4 3 2 6 5) P60→ (1 6 3 2 5 4) P90→ (1 6 5 2 4 3) P120→ (1 6 5 4 3 2)

Tab. 1. Names of Cyclic Permutations of 6-elements set.

G, any F i is exactly represented by rotD(ti). All cyclic permutations of six elements can be generated
by the algorithm [2], and they are collected in Tab. 1.

We will dealt with only drawings of the graph G with a possibility of an existence of a subgraph
Ti ∈ RD because of arguments in the proof of the main Theorem 1. Assume a good drawing D
of the graph G + Dn in which the edges of G does not cross each other. In this case, without loss
of generality, we can choose the vertex notations of the graph in such a way as shown in Fig. 1(a).
It is easy to see that, in D, there are only four different possible configurations of F i summarized
in Tab. 2. In the rest of the paper, each cyclic permutation will be represented by the permutation
with 1 in the first position. As for our considerations does not play role which of the regions is
unbounded, assume the drawings shown in Figure 2. In a fixed drawing of the graph G +Dn, some
configurations from the setM = {A1, A2, A3, A4} do not must appear. We denote byMD the set of
all configurations that exist in the drawing D belonging toM.
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Fig. 2. Drawings of four possible configurations of graph F i with the vertices
of G denoted as in Fig. 1(a).

A1 : (125643) A2 : (132546)
A3 : (125463) A4 : (132564)

Tab. 2. Configurations of graph F i with the vertices of G denoted as in Fig. 1(a).

− A1 A2 A3 A4

A1 6 4 5 5
A2 4 6 5 5
A3 5 5 6 5
A4 5 5 5 6

Tab. 3. Lower-bounds of numbers of crossings for two configurations fromM.

Let X , Y be the configurations fromMD. We shortly denote by crD(X, Y ) the number of crossings
in D between T i and T j for different T i, T j ∈ RD such that F i, F j have configurations X , Y , re-
spectively. Finally, let cr(X, Y ) = min{crD(X, Y )} over all good drawings of the graph G + Dn.
In the next statements we are able to use the possibilities of the algorithm of the cyclic permuta-
tions of 6-elements set, see [2]. By Pi we will understand the inverse cyclic permutation to the
permutation Pi, for i = 1, . . . , 120. Woodall [13] defined the cyclic-ordered graph COG with the
set of vertices V = {P1, P2, . . . , P120}, and with the set of edges E, where two vertices are joined
by the edge if the vertices correspond to the permutations Pi and Pj , which are formed by the ex-
change of exactly two adjacent elements of the 6-tuple (i. e. an ordered set with 6 elements). Hence,
if dCOG(”rotD(ti)”, ”rotD(tj)”) denotes the distance between two vertices correspond to the cyclic
permutations rotD(ti) and rotD(tj) in the graph COG, then

dCOG(”rotD(ti)”, ”rotD(tj)”) = Q(rotD(ti), rotD(tj)) ≤ crD(T
i, T j)

for any two different subgraphs T i and T j . The configurations A1 and A2 are represented by the cyclic
permutations P85 = (125643) and P8 = (132546), respectively. Using P8 = (164523) = P94

and dCOG(”P85”, ”P94”) = 4 we obtain cr(A1, A2) ≥ 4. The same reason gives cr(A1, A3) ≥ 5,
cr(A1, A4) ≥ 5, cr(A2, A3) ≥ 5, cr(A2, A4) ≥ 5 and cr(A3, A4) ≥ 4. Moreover, by a discussion
of possible subdrawings, we can verify that cr(A3, A4) ≥ 5. Clearly, also cr(Ak, Ak) ≥ 6 holds
for any k = 1, . . . , 4. Thus, all lower-bounds of number of crossing of configurations fromM are
summarized in Tab. 3.
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2.2 Main results

Lemma 1 Let D be a good drawing of G + Dn, n > 2, in which crD(T
i, T j) 6= 0 for any different

subgraphs T i and T j . Let 2|RD|+ |SD| > 2n− 2
⌊
n
2

⌋
and let T n, T n−1 ∈ RD be different subgraphs

with crD(T
n ∪ T n−1) ≥ 4. If both conditions

crD(G ∪ T n ∪ T n−1, T i) ≥ 10 for any T i ∈ RD \ {T n, T n−1}, (2)

crD(G ∪ T n ∪ T n−1, T i) ≥ 7 for any T i ∈ SD (3)

hold, then there are at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings in D.

Proof. We denote by r = |RD| and s = |SD|. By the assumption of lemma, any T i 6∈ RD ∪ SD

satisfies the condition crD(G ∪ T n ∪ T n−1, T i) ≥ 4, and the number of T i that cross the graph G
at least two times is equal to n− r − s. By fixing of the graph G ∪ T n ∪ T n−1 we have

crD(G+Dn) = crD(K6,n−2) + crD(K6,n−2, G ∪ T n ∪ T n−1) + crD(G ∪ T n ∪ T n−1) ≥

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+10(r−2)+7s+4(n−r−s)+4 = 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+6r+3s+4n−16 ≥

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 3
(
2n− 2

⌊n
2

⌋
+ 1
)
+ 4n− 16 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n
2

⌋
.

This completes the proof. �

Lemma 2 Let D be a good drawing of G+Dn with the vertex notations of the graph G as in Fig. 1(a),
n > 2. If T n ∈ RD such that F n has configuration Ai ∈MD, for i = 1, 3, 4, then

crD(T
n, T k) ≥ 3 for any T k ∈ SD. (4)

Proof. Let, in D, the graph F n has configuration A1. If T k ∈ SD with crD(T
n, T k) = 2, then

the vertex tk must be placed in a region with at least three vertices of G on its boundary, see Fig. 2.
Since T k ∈ SD, the vertex tk cannot be placed in the region bounded by 4-cycle of the graph G.
Moreover, if tk is placed in another regions, then crD(F

n, T k) > 3. The same idea can be used for
configurations A3 and A4. This completes the proof. �

Remark that the property (4) is not true for configuration A2, see the proof of the following statement.

Collorary 1 Let D be a good drawing of G + Dn with the vertex notations of the graph G as in
Fig. 1(a), n > 2, in which crD(T

i, T j) 6= 0 for any different subgraphs T i and T j . If T n, T n−1 ∈ RD

such that F n, F n−1 have configurations A1, A2, respectively, then

crD(G ∪ T n ∪ T n−1, T k) ≥ 7 for any T k ∈ SD. (5)

Proof. Let, in D, the graphs F n, F n−1 have configurations A1, A2, respectively. The configurations
A1 and A2 are represented by the cyclic permutations P85 = (125643) and P8 = (132546), respec-
tively.
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• If there is a subgraph T k ∈ SD with crD(T
n−1, T k) = 2, then the vertex tk must be placed

in the region with four vertices of G and one vertex tn−1 on its boundary, see Fig. 2. Thus,
the graph F k = G ∪ T k can be represented only by two possible cyclic permutations P81 =
(126453) and P95 = (156423). By the above mentioned algorithm we have

dCOG(”P26”, ”P85”) = dCOG(”P99”, ”P85”) = 4,

where P81 = (135462) = P99 and P95 = (132465) = P26. By the properties of the cyclic
permutations we have crD(T

n, T k) ≥ 4. Thus, crD(G ∪ T n ∪ T n−1, T k) ≥ 1 + 4 + 2 = 7.

• If crD(T n−1, T k) ≥ 3 for any subgraph T k ∈ SD, then crD(G∪T n∪T n−1, T k) ≥ 1+3+3 = 7.

�

Fig. 3. Two good drawings of G+Dn.

Theorem 1 cr(G+Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1.

Proof. In Fig. 3 there are the drawings of G + Dn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings. Thus,

cr(G+Dn) ≤ 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
. We prove the reverse inequality by induction on n. The graph

G +D1 is planar, hence cr(G +D1) = 0. It is clear from Fig. 1(b) that cr(G +D2) ≤ 2. The graph
G + D2 contains a subdivision of K3,4, and therefore cr(G + D2) ≥ 2. So, cr(G + D2) = 2 and
the result is true for n = 1 and n = 2.

Suppose now that, for n ≥ 3, there is a drawing D with

crD(G+Dn) < 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n
2

⌋
, (6)

and let
cr(G+Dm) ≥ 6

⌊m
2

⌋⌊m− 1

2

⌋
+ 2
⌊m
2

⌋
for any m < n. (7)

The drawing D has the following property:

crD(T
i, T j) 6= 0 for all i, j = 1, 2, . . . , n, i 6= j. (8)

To prove it assume that there are two different subgraphs T i and T j such that crD(T i, T j) = 0. With-
out loss of generality let crD(T n−1, T n) = 0. One can easy to verify that crD(G, T n−1 ∪ T n) ≥ 2.
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As cr(K6,3) = 6, we have crD(T
k, T n−1 ∪ T n) ≥ 6 for k = 1, 2, . . . , n − 2. So, for the number

of crossings in D holds

crD(G+Dn) = crD (G+Dn−2)+crD(T
n−1∪T n)+crD(K6,n−2, T

n−1∪T n)+crD(G, T n−1∪T n) ≥

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2
⌊n− 2

2

⌋
+ 6(n− 2) + 2 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n
2

⌋
.

This contradicts (6), and therefore crD(T
i, T j) 6= 0 for all i, j = 1, 2, . . . , n, i 6= j. Our assumption

on D together with cr(K6,n) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
implies that

crD(G) + crD(G,K6,n) < 2
⌊n
2

⌋
.

Hence, if we denote r = |RD| and s = |SD|, then

0r + 1s+ 2(n− r − s) < 2
⌊n
2

⌋
.

Thus, r ≥ 1 and 2r + s > 2n − 2
⌊
n
2

⌋
. We will fix one or two subgraphs with a contradiction with

the assumption that there are less than 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings in the following cases:

Case 1: crD(G) = 0.

We will deal with the sets of configurations {A1, A2} in the drawing D.

1) {A1, A2} 6⊆ MD.

a) Let A2 6∈ MD and Ai ∈ MD for some i ∈ {1, 3, 4}, or let A2 ∈ MD and Ai ∈ MD for
some i ∈ {3, 4}. Without lost of generality, we can assume that T n ∈ RD with F n having
configuration Ai. Thus, by fixing of the graph F n using Lemma 2 we have

crD(G+Dn) = crD(K6,n−1)+crD(K6,n−1, G∪T n)+crD(G∪T n) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+

+5(r−1)+4s+3(n−r−s) = 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+2r+s+3n−5 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+

+2n− 2
⌊n
2

⌋
+ 1 + 3n− 5 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n
2

⌋
.

b) LetMD = {A2} and, without lost of generality, let T n ∈ RD.
If there is no T k ∈ SD with crD(T

n, T k) = 2, then we fix the graph F n having con-
figuration A2 and we obtain the same inequalities as in the previous case. So, assume
that there is a subgraph T k ∈ SD with crD(T

n, T k) = 2. We can easily verify that
crD(G ∪ T n ∪ T k, T i) ≥ 6 + 2 = 8 for any T i ∈ RD, because both F n and F i have con-
figuration A2. Similarly by a discussion for two possible drawings of the graph T k, see
the proof of Corollary 1, we can verify that crD(G ∪ T n ∪ T k, T i) ≥ 7 for any T i ∈ SD

and crD(G ∪ T n ∪ T k, T i) ≥ 6 for any T i 6∈ RD ∪ SD. Thus, by fixing of the graph
G ∪ T n ∪ T k we have

crD(G+Dn) = crD(K6,n−2) + crD(K6,n−2, G ∪ T n ∪ T k) + crD(G ∪ T n ∪ T k) ≥

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+8(r−1)+7s+6(n− r− s)+3 = 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+2r+ s+

+6n− 12 ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 2n− 2

⌊n
2

⌋
+ 1+ 6n− 12 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n
2

⌋
.
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2) {A1, A2} ⊆ MD.
Without lost of generality let us fix any two T n, T n−1 ∈ RD such that F n, F n−1 have config-
urations A1, A2, respectively. Then condition (2) is true by Tab. 3 and condition (3) holds by
Corollary 1. Thus, all assumption of Lemma 1 are fulfilled.

Case 2: crD(G) = 1.

(a) (b) (c) (d)

Fig. 4. Four possible drawings of the graph G with one crossing among its edges.

Since r ≥ 1, without lost of generality we assume T n ∈ RD. In all four possible drawing of the graph
G it is possible to verify that crD(G ∪ T n, T i) ≥ 4 for any subgraph T i, i = 1, . . . , n − 1. Thus, by
fixing of the graph F n we obtain

crD(G+Dn) = crD(K6,n−1) + crD(K6,n−1, G ∪ T n) + crD(G ∪ T n) ≥

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(n− 1) + 1 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n
2

⌋
.

Case 3: crD(G) ≥ 2.

We are able to use the same idea as in the previous case for all possible drawing of the graph G with
a possibility of an existence of a subgraph T i ∈ RD in the considering drawing D.

This completes the proof of the main theorem. �

2.3 Corollaries

G4G3G2G1

Fig. 5. Four graphs G1, G2, G3, and G4 by adding new edges to the graph G.

In Fig. 2 we are able to add some edges to the graph G without another crossings. So the drawing of
the graphs G1+Dn, G2+Dn, G3+Dn, and G4+Dn with 6

⌊
n
2

⌋⌊
n−1
2

⌋
+2
⌊
n
2

⌋
crossings is obtained.

Thus, the next results are obvious.

Collorary 2 cr(Gi +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1, where i = 1, . . . , 4.
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Remark that the crossing numbers of the graphs G3 + Dn and G4 + Dn were obtained in [8], [5]
without using the vertex rotation.

3 Acknowledgments
The research was supported by the Slovak VEGA grant No. 1/0389/15. The research was also
supported by the internal faculty research project no. FEI-2017-39.

References

[1] BEREŽNÝ, Š., STAŠ, M.: On the crosing number of the join of five vertex graph G with the
discrete graph Dn, Acta Electrotechnica et Informatica, vol. 17, no. 3, (2017), pp. 27–32.

[2] BEREŽNÝ, Š., BUŠA, J., STAŠ, M.: Software solution of the algorithm of the cyclic-order
graph, Acta Electrotechnica et Informatica, vol. 18, no. 1, (2018), pp. 3–10.

[3] HERNÁNDEZ-VÉLEZ, C., MEDINA, C., SALAZAR, G.: The optimal drawing of K5,n, Elec-
tronic Journal of Combinatorics, vol. 21, no. 4, (2014), p. 29.
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