Proceedings

CYCLIC PERMUTATIONS: CROSSING NUMBERS OF THE JOIN PRODUCTS OF GRAPHS

STAŠ Michal (SK)

Abstract. The crossing number cr(G) of a graph G is the minimal number of edge crossings over all drawings of G in the plane. In the paper, we extend known results concerning crossing numbers for join of graphs of order six. We give the crossing number of the join product $G + D_n$, where the graph G consists of one 4-cycle and two leaves, and D_n consists on n isolated vertices. The proof is done with the help of software that generates all cyclic permutations for a given number k, and creates a graph for a calculating the distances between all (k-1)! vertices of the graph. Finally, by adding some edges to the graph G, we are able to obtain the crossing numbers of the join product with the discrete graph D_n for other graphs.

Keywords: graph, drawing, crossing number, join product, cyclic permutation

Mathematics subject classification: Primary 05C10, 05C38

1 Introduction

Let G be a simple graph with the vertex set V and the edge set E. A drawing of the graph G is a representation of G in the plane such that its vertices are represented by distinct points and its edges by simple continuous arcs connecting the corresponding point pairs. In such a drawing, the intersection of the interiors of the arcs is called a *crossing*. A drawing is *good* if each two edges have at most one point in common, which is either a common end-vertex or a crossing. Moreover, no three edges cross in a point. It is easy to see that a drawing with minimum number of crossings (an optimal drawing) is always a good drawing. The *crossing number* cr(G) of a simple graph G is defined as the minimum possible number of edge crossings in a good drawing of G in the plane. Let G_1 and G_2 be simple graphs with vertex sets $V(G_1)$ and $V(G_2)$ and edge sets $E(G_1)$ and $E(G_2)$, respectively. The join product of two graphs G_1 and G_2 , denoted by $G_1 + G_2$, is obtained from the vertex-disjoint copies of G_1 and G_2 by adding all edges between $V(G_1)$ and $V(G_2)$. For $|V(G_1)| = m$ and $|V(G_2)| = n$, the edge set of $G_1 + G_2$ is the union of disjoint edge sets of the graphs G_1, G_2 , and the complete bipartite graph $K_{m,n}$. Let D(D(G)) be a good drawing of the graph G. We denote the number of crossings in D by $cr_D(G)$.

Let G_i and G_j be edge-disjoint subgraphs of G. We denote the number of crossings between edges of G_i and edges of G_j by $\operatorname{cr}_D(G_i, G_j)$, and the number of crossings among edges of G_i in D by $\operatorname{cr}_D(G_i)$. In the paper, some proofs are based on the Kleitman's result on crossing numbers of the complete bipartite graphs [12]. More precisely, he proved that

$$\operatorname{cr}(K_{m,n}) = \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor, \quad \text{if} \quad \min\{m,n\} \le 6.$$

2 The crossing number of $G + D_n$

Fig. 1. Drawing of the graph G with the vertex notation and the graph $G + D_2$.

In the paper, we extent these results [4], [6], [7], [9], [10], [11] for another four graphs. Let G be the graph consisting of one 4-cycle and of two leaves. We consider the join product of G with the discrete graph on n vertices denoted by D_n . The graph $G + D_n$ consists of one copy of the graph Gand of n vertices t_1, t_2, \ldots, t_n , where any vertex t_i , $i = 1, 2, \ldots, n$, is adjacent to every vertex of G. Let T^i , $1 \le i \le n$, denote the subgraph induced by the six edges incident with the vertex t_i . Thus, $T^1 \cup \cdots \cup T^n$ is isomorphic with the complete bipartite graph $K_{6,n}$ and

$$G + D_n = G \cup K_{6,n} = G \cup \left(\bigcup_{i=1}^n T^i\right).$$
(1)

2.1 Cyclic permutations and configurations

Let D be a good drawing of the graph $G + D_n$. The rotation $\operatorname{rot}_D(t_i)$ of a vertex t_i in the drawing D is the cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave t_i , see [3]. We emphasize that a rotation is a cyclic permutation. Hence, for $i, j \in \{1, 2, \ldots, n\}, i \neq j$, every subgraph $T^i \cup T^j$ of the graph $G + D_n$ is isomorphic with the graph $K_{6,2}$. In the paper, we will deal with the minimum necessary number of crossings between the edges of T^i and the edges of T^j in a subgraph $T^i \cup T^j$ induced by the drawing D of the graph $G + D_n$ depending on the rotations $\operatorname{rot}_D(t_i)$ and $\operatorname{rot}_D(t_j)$.

Let D be a good drawing of the graph $K_{6,n}$. Woodall [13] proved that in the subdrawing of $T^i \cup T^j \cong K_{6,2}$ induced by D, $\operatorname{cr}_D(T^i, T^j) \ge 6$ if $\operatorname{rot}_D(t_i) = \operatorname{rot}_D(t_j)$. Moreover, if $Q(\operatorname{rot}_D(t_i), \operatorname{rot}_D(t_j))$ denotes the minimum number of interchanges of adjacent elements of $\operatorname{rot}_D(t_i)$ required to produce the inverse cyclic permutation of $\operatorname{rot}_D(t_j)$, then $Q(\operatorname{rot}_D(t_i), \operatorname{rot}_D(t_j)) \le \operatorname{cr}_D(T^i, T^j)$. We will separate the subgraphs T^i , $i = 1, \ldots, n$, of the graph $G + D_n$ into three subsets depending on haw many the considered T^i crosses the edges of G in D. For $i = 1, 2, \ldots, n$, let $R_D = \{T^i : \operatorname{cr}_D(G, T^i) = 0\}$ and $S_D = \{T^i : \operatorname{cr}_D(G, T^i) = 1\}$. Every other subgraph T^i crosses G at least twice in D. Moreover, let F^i denote the subgraph $G \cup T^i$ for $T^i \in R_D$, where $i \in \{1, \ldots, n\}$. Thus, for a given drawing of

Name	Cyclic perm.	Name	Cyclic perm.	Name	Cyclic perm.	Name	Cyclic perm.
$P_1 \rightarrow$	(1 2 3 4 5 6)	$P_{31} \rightarrow$	(1 2 3 6 4 5)	$P_{61} \rightarrow$	(1 2 5 6 3 4)	$P_{91} \rightarrow$	(1 4 5 6 2 3)
$P_2 \rightarrow$	(1 3 2 4 5 6)	$P_{32} \rightarrow$	(1 3 2 6 4 5)	$P_{62} \rightarrow$	(152634)	$P_{92} \rightarrow$	(154623)
$P_3 \rightarrow$	(1 2 4 3 5 6)	$P_{33} \rightarrow$	(1 2 6 3 4 5)	$P_{63} \rightarrow$	(1 2 6 5 3 4)	$P_{93} \rightarrow$	(1 4 6 5 2 3)
$P_4 \rightarrow$	(1 4 2 3 5 6)	$P_{34} \rightarrow$	(1 6 2 3 4 5)	$P_{64} \rightarrow$	(162534)	$P_{94} \rightarrow$	(164523)
$P_5 \rightarrow$	(134256)	$P_{35} \rightarrow$	(1 3 6 2 4 5)	$P_{65} \rightarrow$	(156234)	$P_{95} \rightarrow$	(156423)
$P_6 \rightarrow$	(1 4 3 2 5 6)	$P_{36} \rightarrow$	(163245)	$P_{66} \rightarrow$	(165234)	$P_{96} \rightarrow$	(165423)
$P_7 \rightarrow$	(1 2 3 5 4 6)	$P_{37} \rightarrow$	(1 2 4 6 3 5)	$P_{67} \rightarrow$	(1 3 5 6 2 4)	$P_{97} \rightarrow$	(1 3 4 5 6 2)
$P_8 \rightarrow$	(1 3 2 5 4 6)	$P_{38} \rightarrow$	(1 4 2 6 3 5)	$P_{68} \rightarrow$	(153624)	$P_{98} \rightarrow$	(1 4 3 5 6 2)
$P_9 \rightarrow$	(1 2 5 3 4 6)	$P_{39} \rightarrow$	(1 2 6 4 3 5)	$P_{69} \rightarrow$	(1 3 6 5 2 4)	$P_{99} \rightarrow$	(1 3 5 4 6 2)
$P_{10} \rightarrow$	(152346)	$P_{40} \rightarrow$	(1 6 2 4 3 5)	$P_{70} \rightarrow$	(163524)	$P_{100} \rightarrow$	(1 5 3 4 6 2)
$P_{11} \rightarrow$	(1 3 5 2 4 6)	$P_{41} \rightarrow$	(1 4 6 2 3 5)	$P_{71} \rightarrow$	(156324)	$P_{101} \rightarrow$	(1 4 5 3 6 2)
$P_{12} \rightarrow$	(153246)	$P_{42} \rightarrow$	(164235)	$P_{72} \rightarrow$	(165324)	$P_{102} \rightarrow$	(154362)
$P_{13} \rightarrow$	(1 2 4 5 3 6)	$P_{43} \rightarrow$	(1 3 4 6 2 5)	$P_{73} \rightarrow$	(1 2 4 5 6 3)	$P_{103} \rightarrow$	(1 3 4 6 5 2)
$P_{14} \rightarrow$	(1 4 2 5 3 6)	$P_{44} \rightarrow$	(1 4 3 6 2 5)	$P_{74} \rightarrow$	(1 4 2 5 6 3)	$P_{104} \rightarrow$	(1 4 3 6 5 2)
$P_{15} \rightarrow$	(1 2 5 4 3 6)	$P_{45} \rightarrow$	(1 3 6 4 2 5)	$P_{75} \rightarrow$	(1 2 5 4 6 3)	$P_{105} \rightarrow$	(1 3 6 4 5 2)
$P_{16} \rightarrow$	(152436)	$P_{46} \rightarrow$	(163425)	$P_{76} \rightarrow$	(152463)	$P_{106} \rightarrow$	(163452)
$P_{17} \rightarrow$	(1 4 5 2 3 6)	$P_{47} \rightarrow$	(1 4 6 3 2 5)	$P_{77} \rightarrow$	(1 4 5 2 6 3)	$P_{107} \rightarrow$	(1 4 6 3 5 2)
$P_{18} \rightarrow$	(154236)	$P_{48} \rightarrow$	(164325)	$P_{78} \rightarrow$	(154263)	$P_{108} \rightarrow$	(164352)
$P_{19} \rightarrow$	(1 3 4 5 2 6)	$P_{49} \rightarrow$	(1 2 3 5 6 4)	$P_{79} \rightarrow$	(1 2 4 6 5 3)	$P_{109} \rightarrow$	(1 3 5 6 4 2)
$P_{20} \rightarrow$	(1 4 3 5 2 6)	$P_{50} \rightarrow$	(1 3 2 5 6 4)	$P_{80} \rightarrow$	(1 4 2 6 5 3)	$P_{110} \rightarrow$	(153642)
$P_{21} \rightarrow$	(1 3 5 4 2 6)	$P_{51} \rightarrow$	(1 2 5 3 6 4)	$P_{81} \rightarrow$	(1 2 6 4 5 3)	$P_{111} \rightarrow$	(1 3 6 5 4 2)
$P_{22} \rightarrow$	(153426)	$P_{52} \rightarrow$	(152364)	$P_{82} \rightarrow$	(1 6 2 4 5 3)	$P_{112} \rightarrow$	(163542)
$P_{23} \rightarrow$	(1 4 5 3 2 6)	$P_{53} \rightarrow$	(1 3 5 2 6 4)	$P_{83} \rightarrow$	(1 4 6 2 5 3)	$P_{113} \rightarrow$	(156342)
$P_{24} \rightarrow$	(154326)	$P_{54} \rightarrow$	(153264)	$P_{84} \rightarrow$	(164253)	$P_{114} \rightarrow$	(165342)
$P_{25} \rightarrow$	(1 2 3 4 6 5)	$P_{55} \rightarrow$	(1 2 3 6 5 4)	$P_{85} \rightarrow$	(1 2 5 6 4 3)	$P_{115} \rightarrow$	(1 4 5 6 3 2)
$P_{26} \rightarrow$	(1 3 2 4 6 5)	$P_{56} \rightarrow$	(1 3 2 6 5 4)	$P_{86} \rightarrow$	(152643)	$P_{116} \rightarrow$	(154632)
$P_{27} \rightarrow$	(1 2 4 3 6 5)	$P_{57} \rightarrow$	(1 2 6 3 5 4)	$P_{87} \rightarrow$	(1 2 6 5 4 3)	$P_{117} \rightarrow$	(1 4 6 5 3 2)
$P_{28} \rightarrow$	(1 4 2 3 6 5)	$P_{58} \rightarrow$	(1 6 2 3 5 4)	$P_{88} \rightarrow$	(1 6 2 5 4 3)	$P_{118} \rightarrow$	(164532)
$P_{29} \rightarrow$	(1 3 4 2 6 5)	$P_{59} \rightarrow$	(1 3 6 2 5 4)	$P_{89} \rightarrow$	(156243)	$P_{119} \rightarrow$	(156432)
$P_{30} \rightarrow$	(1 4 3 2 6 5)	$P_{60} \rightarrow$	(163254)	$P_{90} \rightarrow$	(165243)	$P_{120} \rightarrow$	(165432)

Tab. 1. Names of Cyclic Permutations of 6-elements set.

G, any F^i is exactly represented by $rot_D(t_i)$. All cyclic permutations of six elements can be generated by the algorithm [2], and they are collected in Tab. 1.

We will dealt with only drawings of the graph G with a possibility of an existence of a subgraph $T_i \in R_D$ because of arguments in the proof of the main Theorem 1. Assume a good drawing D of the graph $G + D_n$ in which the edges of G does not cross each other. In this case, without loss of generality, we can choose the vertex notations of the graph in such a way as shown in Fig. 1(a). It is easy to see that, in D, there are only four different possible configurations of F^i summarized in Tab. 2. In the rest of the paper, each cyclic permutation will be represented by the permutation with 1 in the first position. As for our considerations does not play role which of the regions is unbounded, assume the drawings shown in Figure 2. In a fixed drawing of the graph $G + D_n$, some configurations from the set $\mathcal{M} = \{A_1, A_2, A_3, A_4\}$ do not must appear. We denote by \mathcal{M}_D the set of all configurations that exist in the drawing D belonging to \mathcal{M} .

Fig. 2. Drawings of four possible configurations of graph F^i with the vertices of G denoted as in Fig. 1(a).

$A_1:(125643)$	$A_2:(132546)$
$A_3:(125463)$	$A_4:(132564)$

Tab. 2. Configurations of graph F^i with the vertices of G denoted as in Fig. 1(a).

—	A_1	A_2	A_3	A_4
A_1	6	4	5	5
A_2	4	6	5	5
A_3	5	5	6	5
A_4	5	5	5	6

Tab. 3. Lower-bounds of numbers of crossings for two configurations from \mathcal{M} .

Let X, Y be the configurations from \mathcal{M}_D . We shortly denote by $\operatorname{cr}_D(X, Y)$ the number of crossings in D between T^i and T^j for different $T^i, T^j \in R_D$ such that F^i, F^j have configurations X, Y, respectively. Finally, let $\operatorname{cr}(X, Y) = \min\{\operatorname{cr}_D(X, Y)\}$ over all good drawings of the graph $G + D_n$. In the next statements we are able to use the possibilities of the algorithm of the cyclic permutations of 6-elements set, see [2]. By $\overline{P_i}$ we will understand the inverse cyclic permutation to the permutation P_i , for $i = 1, \ldots, 120$. Woodall [13] defined the cyclic-ordered graph COG with the set of vertices $V = \{P_1, P_2, \ldots, P_{120}\}$, and with the set of edges E, where two vertices are joined by the edge if the vertices correspond to the permutations P_i and P_j , which are formed by the exchange of exactly two adjacent elements of the 6-tuple (i. e. an ordered set with 6 elements). Hence, if $d_{COG}(\text{"rot}_D(t_i)\text{", "rot}_D(t_j)\text{")}$ denotes the distance between two vertices correspond to the cyclic permutations $\operatorname{rot}_D(t_i)$ and $\operatorname{rot}_D(t_i)$ in the graph COG, then

$$d_{COG}(\operatorname{rot}_D(t_i), \operatorname{rot}_D(t_j)) = Q(\operatorname{rot}_D(t_i), \operatorname{rot}_D(t_j)) \leq \operatorname{cr}_D(T^i, T^j)$$

for any two different subgraphs T^i and T^j . The configurations A_1 and A_2 are represented by the cyclic permutations $P_{85} = (125643)$ and $P_8 = (132546)$, respectively. Using $\overline{P_8} = (164523) = P_{94}$ and $d_{COG}("P_{85}", "P_{94}") = 4$ we obtain $\operatorname{cr}(A_1, A_2) \ge 4$. The same reason gives $\operatorname{cr}(A_1, A_3) \ge 5$, $\operatorname{cr}(A_1, A_4) \ge 5$, $\operatorname{cr}(A_2, A_3) \ge 5$, $\operatorname{cr}(A_2, A_4) \ge 5$ and $\operatorname{cr}(A_3, A_4) \ge 4$. Moreover, by a discussion of possible subdrawings, we can verify that $\operatorname{cr}(A_3, A_4) \ge 5$. Clearly, also $\operatorname{cr}(A_k, A_k) \ge 6$ holds for any $k = 1, \ldots, 4$. Thus, all lower-bounds of number of crossing of configurations from \mathcal{M} are summarized in Tab. 3.

2.2 Main results

Lemma 1 Let D be a good drawing of $G + D_n$, n > 2, in which $\operatorname{cr}_D(T^i, T^j) \neq 0$ for any different subgraphs T^i and T^j . Let $2|R_D| + |S_D| > 2n - 2\left\lfloor \frac{n}{2} \right\rfloor$ and let $T^n, T^{n-1} \in R_D$ be different subgraphs with $\operatorname{cr}_D(T^n \cup T^{n-1}) \geq 4$. If both conditions

$$\operatorname{cr}_{D}(G \cup T^{n} \cup T^{n-1}, T^{i}) \ge 10 \qquad \qquad \text{for any } T^{i} \in R_{D} \setminus \{T^{n}, T^{n-1}\},$$

$$(2)$$

$$\operatorname{cr}_D(G \cup T^n \cup T^{n-1}, T^i) \ge 7 \qquad \qquad \text{for any } T^i \in S_D \tag{3}$$

hold, then there are at least $6\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2\left\lfloor \frac{n}{2} \right\rfloor$ crossings in D.

*P*roof. We denote by $r = |R_D|$ and $s = |S_D|$. By the assumption of lemma, any $T^i \notin R_D \cup S_D$ satisfies the condition $\operatorname{cr}_D(G \cup T^n \cup T^{n-1}, T^i) \geq 4$, and the number of T^i that cross the graph G at least two times is equal to n - r - s. By fixing of the graph $G \cup T^n \cup T^{n-1}$ we have

$$\operatorname{cr}_{D}(G+D_{n}) = \operatorname{cr}_{D}(K_{6,n-2}) + \operatorname{cr}_{D}(K_{6,n-2}, G \cup T^{n} \cup T^{n-1}) + \operatorname{cr}_{D}(G \cup T^{n} \cup T^{n-1}) \geq \\ \geq 6 \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 10(r-2) + 7s + 4(n-r-s) + 4 = 6 \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 6r + 3s + 4n - 16 \geq \\ \geq 6 \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 3 \left(2n-2 \left\lfloor \frac{n}{2} \right\rfloor + 1 \right) + 4n - 16 \geq 6 \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2 \left\lfloor \frac{n}{2} \right\rfloor.$$
This completes the proof

This completes the proof.

Lemma 2 Let D be a good drawing of $G+D_n$ with the vertex notations of the graph G as in Fig. 1(a), n > 2. If $T^n \in R_D$ such that F^n has configuration $A_i \in \mathcal{M}_D$, for i = 1, 3, 4, then

$$\operatorname{cr}_D(T^n, T^k) \ge 3$$
 for any $T^k \in S_D$. (4)

Proof. Let, in D, the graph F^n has configuration A_1 . If $T^k \in S_D$ with $\operatorname{cr}_D(T^n, T^k) = 2$, then the vertex t_k must be placed in a region with at least three vertices of G on its boundary, see Fig. 2. Since $T^k \in S_D$, the vertex t_k cannot be placed in the region bounded by 4-cycle of the graph G. Moreover, if t_k is placed in another regions, then $cr_D(F^n, T^k) > 3$. The same idea can be used for configurations A_3 and A_4 . This completes the proof.

Remark that the property (4) is not true for configuration A_2 , see the proof of the following statement.

Collorary 1 Let D be a good drawing of $G + D_n$ with the vertex notations of the graph G as in Fig. 1(a), n > 2, in which $\operatorname{cr}_D(T^i, T^j) \neq 0$ for any different subgraphs T^i and T^j . If $T^n, T^{n-1} \in R_D$ such that F^n , F^{n-1} have configurations A_1 , A_2 , respectively, then

$$\operatorname{cr}_D(G \cup T^n \cup T^{n-1}, T^k) \ge 7 \qquad \qquad \text{for any } T^k \in S_D. \tag{5}$$

Proof. Let, in D, the graphs F^n , F^{n-1} have configurations A_1, A_2 , respectively. The configurations A_1 and A_2 are represented by the cyclic permutations $P_{85} = (125643)$ and $P_8 = (132546)$, respectively.

• If there is a subgraph $T^k \in S_D$ with $\operatorname{cr}_D(T^{n-1}, T^k) = 2$, then the vertex t_k must be placed in the region with four vertices of G and one vertex t_{n-1} on its boundary, see Fig. 2. Thus, the graph $F^k = G \cup T^k$ can be represented only by two possible cyclic permutations $P_{81} =$ (126453) and $P_{95} = (156423)$. By the above mentioned algorithm we have

$$d_{COG}("P_{26}", "P_{85}") = d_{COG}("P_{99}", "P_{85}") = 4,$$

where $\overline{P_{81}} = (135462) = P_{99}$ and $\overline{P_{95}} = (132465) = P_{26}$. By the properties of the cyclic permutations we have $cr_D(T^n, T^k) \ge 4$. Thus, $cr_D(G \cup T^n \cup T^{n-1}, T^k) \ge 1 + 4 + 2 = 7$.

• If $\operatorname{cr}_D(T^{n-1}, T^k) \ge 3$ for any subgraph $T^k \in S_D$, then $\operatorname{cr}_D(G \cup T^n \cup T^{n-1}, T^k) \ge 1 + 3 + 3 = 7$.

Fig. 3. Two good drawings of $G + D_n$.

Theorem 1 $\operatorname{cr}(G+D_n) = 6\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2\left\lfloor \frac{n}{2} \right\rfloor \text{ for } n \ge 1.$

Proof. In Fig. 3 there are the drawings of $G + D_n$ with $6 \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor + 2 \lfloor \frac{n}{2} \rfloor$ crossings. Thus, $\operatorname{cr}(G + D_n) \leq 6 \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor + 2 \lfloor \frac{n}{2} \rfloor$. We prove the reverse inequality by induction on n. The graph $G + D_1$ is planar, hence $\operatorname{cr}(G + D_1) = 0$. It is clear from Fig. 1(b) that $\operatorname{cr}(G + D_2) \leq 2$. The graph $G + D_2$ contains a subdivision of $K_{3,4}$, and therefore $\operatorname{cr}(G + D_2) \geq 2$. So, $\operatorname{cr}(G + D_2) = 2$ and the result is true for n = 1 and n = 2.

Suppose now that, for $n \ge 3$, there is a drawing D with

$$\operatorname{cr}_{D}(G+D_{n}) < 6\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2\left\lfloor \frac{n}{2} \right\rfloor, \tag{6}$$

and let

$$\operatorname{cr}(G+D_m) \ge 6\left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor + 2\left\lfloor \frac{m}{2} \right\rfloor \qquad \text{for any } m < n. \tag{7}$$

The drawing D has the following property:

$$\operatorname{cr}_D(T^i, T^j) \neq 0 \qquad \text{for all } i, j = 1, 2, \dots, n, \ i \neq j.$$
(8)

To prove it assume that there are two different subgraphs T^i and T^j such that $\operatorname{cr}_D(T^i, T^j) = 0$. Without loss of generality let $\operatorname{cr}_D(T^{n-1}, T^n) = 0$. One can easy to verify that $\operatorname{cr}_D(G, T^{n-1} \cup T^n) \ge 2$. As $cr(K_{6,3}) = 6$, we have $cr_D(T^k, T^{n-1} \cup T^n) \ge 6$ for k = 1, 2, ..., n-2. So, for the number of crossings in D holds

$$\operatorname{cr}_{D}(G+D_{n}) = \operatorname{cr}_{D}(G+D_{n-2}) + \operatorname{cr}_{D}(T^{n-1}\cup T^{n}) + \operatorname{cr}_{D}(K_{6,n-2}, T^{n-1}\cup T^{n}) + \operatorname{cr}_{D}(G, T^{n-1}\cup T^{n}) \ge 6\left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 2\left\lfloor \frac{n-2}{2} \right\rfloor + 6(n-2) + 2 = 6\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2\left\lfloor \frac{n}{2} \right\rfloor.$$

This contradicts (6), and therefore $\operatorname{cr}_D(T^i, T^j) \neq 0$ for all $i, j = 1, 2, \ldots, n, i \neq j$. Our assumption on D together with $\operatorname{cr}(K_{6,n}) = 6 \left| \frac{n}{2} \right| \left| \frac{n-1}{2} \right|$ implies that

$$\operatorname{cr}_D(G) + \operatorname{cr}_D(G, K_{6,n}) < 2 \left\lfloor \frac{n}{2} \right\rfloor.$$

Hence, if we denote $r = |R_D|$ and $s = |S_D|$, then

$$0r + 1s + 2(n - r - s) < 2\left\lfloor \frac{n}{2} \right\rfloor.$$

Thus, $r \ge 1$ and $2r + s > 2n - 2\lfloor \frac{n}{2} \rfloor$. We will fix one or two subgraphs with a contradiction with the assumption that there are less than $6\lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor + 2\lfloor \frac{n}{2} \rfloor$ crossings in the following cases:

Case 1:
$$\operatorname{cr}_D(G) = 0$$
.

We will deal with the sets of configurations $\{A_1, A_2\}$ in the drawing D.

- 1) $\{A_1, A_2\} \not\subseteq \mathcal{M}_D$.
 - a) Let A₂ ∉ M_D and A_i ∈ M_D for some i ∈ {1,3,4}, or let A₂ ∈ M_D and A_i ∈ M_D for some i ∈ {3,4}. Without lost of generality, we can assume that Tⁿ ∈ R_D with Fⁿ having configuration A_i. Thus, by fixing of the graph Fⁿ using Lemma 2 we have

$$\operatorname{cr}_{D}(G+D_{n}) = \operatorname{cr}_{D}(K_{6,n-1}) + \operatorname{cr}_{D}(K_{6,n-1}, G \cup T^{n}) + \operatorname{cr}_{D}(G \cup T^{n}) \ge 6\left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor + 5(r-1) + 4s + 3(n-r-s) = 6\left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor + 2r + s + 3n - 5 \ge 6\left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor + 2n - 2\left\lfloor \frac{n}{2} \right\rfloor + 1 + 3n - 5 \ge 6\left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2\left\lfloor \frac{n}{2} \right\rfloor.$$

b) Let $\mathcal{M}_D = \{A_2\}$ and, without lost of generality, let $T^n \in R_D$.

If there is no $T^k \in S_D$ with $\operatorname{cr}_D(T^n, T^k) = 2$, then we fix the graph F^n having configuration A_2 and we obtain the same inequalities as in the previous case. So, assume that there is a subgraph $T^k \in S_D$ with $\operatorname{cr}_D(T^n, T^k) = 2$. We can easily verify that $\operatorname{cr}_D(G \cup T^n \cup T^k, T^i) \ge 6 + 2 = 8$ for any $T^i \in R_D$, because both F^n and F^i have configuration A_2 . Similarly by a discussion for two possible drawings of the graph T^k , see the proof of Corollary 1, we can verify that $\operatorname{cr}_D(G \cup T^n \cup T^k, T^i) \ge 7$ for any $T^i \in S_D$ and $\operatorname{cr}_D(G \cup T^n \cup T^k, T^i) \ge 6$ for any $T^i \notin R_D \cup S_D$. Thus, by fixing of the graph $G \cup T^n \cup T^k$ we have

$$\operatorname{cr}_{D}(G+D_{n}) = \operatorname{cr}_{D}(K_{6,n-2}) + \operatorname{cr}_{D}(K_{6,n-2}, G \cup T^{n} \cup T^{k}) + \operatorname{cr}_{D}(G \cup T^{n} \cup T^{k}) \geq \\ \geq 6 \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 8(r-1) + 7s + 6(n-r-s) + 3 = 6 \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 2r + s + \\ + 6n - 12 \geq 6 \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor + 2n - 2 \left\lfloor \frac{n}{2} \right\rfloor + 1 + 6n - 12 \geq 6 \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2 \left\lfloor \frac{n}{2} \right\rfloor.$$

2) $\{A_1, A_2\} \subseteq \mathcal{M}_D$.

Without lost of generality let us fix any two T^n , $T^{n-1} \in R_D$ such that F^n , F^{n-1} have configurations A_1, A_2 , respectively. Then condition (2) is true by Tab. 3 and condition (3) holds by Corollary 1. Thus, all assumption of Lemma 1 are fulfilled.

Case 2: $cr_D(G) = 1$.

Fig. 4. Four possible drawings of the graph G with one crossing among its edges.

Since $r \ge 1$, without lost of generality we assume $T^n \in R_D$. In all four possible drawing of the graph G it is possible to verify that $\operatorname{cr}_D(G \cup T^n, T^i) \ge 4$ for any subgraph T^i , $i = 1, \ldots, n-1$. Thus, by fixing of the graph F^n we obtain

$$\operatorname{cr}_{D}(G+D_{n}) = \operatorname{cr}_{D}(K_{6,n-1}) + \operatorname{cr}_{D}(K_{6,n-1}, G \cup T^{n}) + \operatorname{cr}_{D}(G \cup T^{n}) \ge$$
$$\geq 6 \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor + 4(n-1) + 1 \ge 6 \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor + 2 \left\lfloor \frac{n}{2} \right\rfloor.$$

Case 3: $\operatorname{cr}_D(G) \ge 2$.

We are able to use the same idea as in the previous case for all possible drawing of the graph G with a possibility of an existence of a subgraph $T^i \in R_D$ in the considering drawing D.

This completes the proof of the main theorem.

2.3 Corollaries

Fig. 5. Four graphs G_1 , G_2 , G_3 , and G_4 by adding new edges to the graph G.

In Fig. 2 we are able to add some edges to the graph G without another crossings. So the drawing of the graphs $G_1 + D_n$, $G_2 + D_n$, $G_3 + D_n$, and $G_4 + D_n$ with $6\lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor + 2\lfloor \frac{n}{2} \rfloor$ crossings is obtained. Thus, the next results are obvious.

Collorary 2 cr
$$(G_i + D_n) = 6 \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor + 2 \lfloor \frac{n}{2} \rfloor$$
 for $n \ge 1$, where $i = 1, \dots, 4$.

Remark that the crossing numbers of the graphs $G_3 + D_n$ and $G_4 + D_n$ were obtained in [8], [5] without using the vertex rotation.

3 Acknowledgments

The research was supported by the Slovak VEGA grant No. 1/0389/15. The research was also supported by the internal faculty research project no. FEI-2017-39.

References

- [1] BEREŽNÝ, Š., STAŠ, M.: On the crosing number of the join of five vertex graph G with the discrete graph D_n , Acta Electrotechnica et Informatica, vol. 17, no. 3, (2017), pp. 27–32.
- [2] BEREŽNÝ, Š., BUŠA, J., STAŠ, M.: *Software solution of the algorithm of the cyclic-order graph*, Acta Electrotechnica et Informatica, vol. 18, no. 1, (2018), pp. 3–10.
- [3] HERNÁNDEZ-VÉLEZ, C., MEDINA, C., SALAZAR, G.: *The optimal drawing of* K_{5,n}, Electronic Journal of Combinatorics, vol. 21, no. 4, (2014), p. 29.
- [4] KLEŠČ, M.: *The join of graphs and crossings numbers*, Electron. Notes Discrete Math., vol. 28, (2007), pp. 349–355.
- [5] KLEŠČ, M.: *The crossing number of join of the special graph on six vertices with path and cycle*, Dicrete Math., vol. 310, (2010), pp. 1475–1481.
- [6] KLEŠČ, M., SCHRÖTTER, Š.: *The crossing numbers of join products of paths with graphs of order four*, Discussiones Mathematicae Graph Theory, vol. 31, (2011), pp. 312–331.
- [7] KLEŠČ, M., SCHRÖTTER, Š.: *The crossing numbers of join of paths and cycles with two graphs of order five*, Mathematical Modeling and Computational Science, vol. 7125, (2012), pp. 160–167.
- [8] KLEŠČ, M., SCHRÖTTER, Š.: On the crossing numbers of cartesian products of stars and graphs of order six, Discussiones Mathematicae Graph Theory, vol. 33, (2013), pp. 583–597.
- [9] KLEŠČ, M., KRAVECOVÁ, D., PETRILLOVÁ, J.: *The crossing number of join of special graphs*, Electrical Engineering and Informatics 2, (2011), pp. 522–527.
- [10] KLEŠČ, M., VALO, M.: *Minimum crossings in join of graphs with paths and cycles*, Acta Electrotechnica et Informatica, vol. 12, (2012), pp. 32–37.
- [11] STAŠ, M.: On the crossing number of the join of the discrete graph with one graph of order *five*, Mathematical Modelling and Geometry, vol. 5, no. 2, (2017), pp. 12–19.
- [12] KLEITMAN, D. J.: *The crossing number of* $K_{5,n}$, J. Combinatorial Theory, vol. 9, (1970), pp. 315–323.
- [13] WOODALL, D. R.: *Cyclic-order graphs and Zarankiewicz's crossings number conjucture*, J. Graph Theory, vol. 17, (1993), pp. 657–671.

Current address

Staš Michal, RNDr., PhD.

Department of Mathematics and Theoretical Informatics Faculty of Electrical Engineering and Informatics Technical University of Košice Letná 9, 042 00 Košice, Slovak Republic E-mail: michal.stas@tuke.sk