Slovak University of Technology in Bratislava
Faculty of Mechanical Engineering

CYCLIC PERMUTATIONS: CROSSING NUMBERS OF THE JOIN PRODUCTS OF GRAPHS

STAŠ Michal (SK)

Abstract

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimal number of edge crossings over all drawings of G in the plane. In the paper, we extend known results concerning crossing numbers for join of graphs of order six. We give the crossing number of the join product $G+D_{n}$, where the graph G consists of one 4 -cycle and two leaves, and D_{n} consists on n isolated vertices. The proof is done with the help of software that generates all cyclic permutations for a given number k, and creates a graph for a calculating the distances between all $(k-1)$! vertices of the graph. Finally, by adding some edges to the graph G, we are able to obtain the crossing numbers of the join product with the discrete graph D_{n} for other graphs.

Keywords: graph, drawing, crossing number, join product, cyclic permutation
Mathematics subject classification: Primary 05C10, 05C38

1 Introduction

Let G be a simple graph with the vertex set V and the edge set E. A drawing of the graph G is a representation of G in the plane such that its vertices are represented by distinct points and its edges by simple continuous arcs connecting the corresponding point pairs. In such a drawing, the intersection of the interiors of the arcs is called a crossing. A drawing is good if each two edges have at most one point in common, which is either a common end-vertex or a crossing. Moreover, no three edges cross in a point. It is easy to see that a drawing with minimum number of crossings (an optimal drawing) is always a good drawing. The crossing number $\operatorname{cr}(G)$ of a simple graph G is defined as the minimum possible number of edge crossings in a good drawing of G in the plane. Let G_{1} and G_{2} be simple graphs with vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, respectively. The join product of two graphs G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is obtained from the vertex-disjoint copies of G_{1} and G_{2} by adding all edges between $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. For $\left|V\left(G_{1}\right)\right|=m$ and $\left|V\left(G_{2}\right)\right|=n$, the edge set of $G_{1}+G_{2}$ is the union of disjoint edge sets of the graphs G_{1}, G_{2}, and the complete bipartite graph $K_{m, n}$. Let $D(D(G))$ be a good drawing of the graph G. We denote the number of crossings in D by $c r_{D}(G)$.

Let G_{i} and G_{j} be edge-disjoint subgraphs of G. We denote the number of crossings between edges of G_{i} and edges of G_{j} by $\operatorname{cr}_{D}\left(G_{i}, G_{j}\right)$, and the number of crossings among edges of G_{i} in D by $c r_{D}\left(G_{i}\right)$. In the paper, some proofs are based on the Kleitman's result on crossing numbers of the complete bipartite graphs [12]. More precisely, he proved that

$$
\operatorname{cr}\left(K_{m, n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor, \quad \text { if } \quad \min \{m, n\} \leq 6
$$

2 The crossing number of $G+D_{n}$

(a)

(b)

Fig. 1. Drawing of the graph G with the vertex notation and the graph $G+D_{2}$.
In the paper, we extent these results [4], [6], [7], [9], [10], [11] for another four graphs. Let G be the graph consisting of one 4 -cycle and of two leaves. We consider the join product of G with the discrete graph on n vertices denoted by D_{n}. The graph $G+D_{n}$ consists of one copy of the graph G and of n vertices $t_{1}, t_{2}, \ldots, t_{n}$, where any vertex $t_{i}, i=1,2, \ldots, n$, is adjacent to every vertex of G. Let $T^{i}, 1 \leq i \leq n$, denote the subgraph induced by the six edges incident with the vertex t_{i}. Thus, $T^{1} \cup \cdots \cup T^{n}$ is isomorphic with the complete bipartite graph $K_{6, n}$ and

$$
\begin{equation*}
G+D_{n}=G \cup K_{6, n}=G \cup\left(\bigcup_{i=1}^{n} T^{i}\right) \tag{1}
\end{equation*}
$$

2.1 Cyclic permutations and configurations

Let D be a good drawing of the graph $G+D_{n}$. The rotation $\operatorname{rot}_{D}\left(t_{i}\right)$ of a vertex t_{i} in the drawing D is the cyclic permutation that records the (cyclic) counter-clockwise order in which the edges leave t_{i}, see [3]. We emphasize that a rotation is a cyclic permutation. Hence, for $i, j \in\{1,2, \ldots, n\}, i \neq j$, every subgraph $T^{i} \cup T^{j}$ of the graph $G+D_{n}$ is isomorphic with the graph $K_{6,2}$. In the paper, we will deal with the minimum necessary number of crossings between the edges of T^{i} and the edges of T^{j} in a subgraph $T^{i} \cup T^{j}$ induced by the drawing D of the graph $G+D_{n}$ depending on the rotations $\operatorname{rot}_{D}\left(t_{i}\right)$ and $\operatorname{rot}_{D}\left(t_{j}\right)$.
Let D be a good drawing of the graph $K_{6, n}$. Woodall [13] proved that in the subdrawing of $T^{i} \cup T^{j} \cong$ $K_{6,2}$ induced by $D, \operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \geq 6$ if $\operatorname{rot}_{D}\left(t_{i}\right)=\operatorname{rot}_{D}\left(t_{j}\right)$. Moreover, if $Q\left(\operatorname{rot}_{D}\left(t_{i}\right), \operatorname{rot}_{D}\left(t_{j}\right)\right)$ denotes the minimum number of interchanges of adjacent elements of $\operatorname{rot}_{D}\left(t_{i}\right)$ required to produce the inverse cyclic permutation of $\operatorname{rot}_{D}\left(t_{j}\right)$, then $Q\left(\operatorname{rot}_{D}\left(t_{i}\right), \operatorname{rot}_{D}\left(t_{j}\right)\right) \leq \operatorname{cr}_{D}\left(T^{i}, T^{j}\right)$. We will separate the subgraphs $T^{i}, i=1, \ldots, n$, of the graph $G+D_{n}$ into three subsets depending on haw many the considered T^{i} crosses the edges of G in D. For $i=1,2, \ldots, n$, let $R_{D}=\left\{T^{i}: \operatorname{cr}_{D}\left(G, T^{i}\right)=0\right\}$ and $S_{D}=\left\{T^{i}: \operatorname{cr}_{D}\left(G, T^{i}\right)=1\right\}$. Every other subgraph T^{i} crosses G at least twice in D. Moreover, let F^{i} denote the subgraph $G \cup T^{i}$ for $T^{i} \in R_{D}$, where $i \in\{1, \ldots, n\}$. Thus, for a given drawing of

Name	Cyclic perm.						
$P_{1} \rightarrow$	(123456)	$P_{31} \rightarrow$	(123645)	$P_{61} \rightarrow$	(125634)	$P_{91} \rightarrow$	(145623)
$P_{2} \rightarrow$	(132456)	$P_{32} \rightarrow$	(132645)	$P_{62} \rightarrow$	(152634)	$P_{92} \rightarrow$	(154623)
$P_{3} \rightarrow$	(124356)	$P_{33} \rightarrow$	(126345)	$P_{63} \rightarrow$	(126534)	${ }^{\text {P93 }} \rightarrow$	(146523)
$P_{4} \rightarrow$	(142356)	$P_{34} \rightarrow$	(162345)	$P_{64} \rightarrow$	(162534)	${ }^{\text {P4 }} \rightarrow$	(164523)
$P_{5} \rightarrow$	(134256)	$P_{35} \rightarrow$	(136245)	$P_{65} \rightarrow$	(156234)	$P_{95} \rightarrow$	(156423)
$P_{6} \rightarrow$	(143256)	$P_{36} \rightarrow$	(163245)	$P_{66} \rightarrow$	(165234)	$P_{96} \rightarrow$	(165423)
$P_{7} \rightarrow$	(123546)	$P_{37} \rightarrow$	(124635)	$P_{67} \rightarrow$	(135624)	$P_{97} \rightarrow$	(134562)
$P_{8} \rightarrow$	(132546)	$P_{38} \rightarrow$	(142635)	$P_{68} \rightarrow$	(153624)	$P_{98} \rightarrow$	(143562)
$P_{9} \rightarrow$	(125346)	$P_{39} \rightarrow$	(126435)	$P_{69} \rightarrow$	(136524)	$P_{99} \rightarrow$	(135462)
$P_{10} \rightarrow$	(152346)	$P_{40} \rightarrow$	(162435)	$P_{70} \rightarrow$	(163524)	$P_{100} \rightarrow$	(153462)
$P_{11} \rightarrow$	(135246)	$P_{41} \rightarrow$	(146235)	$P_{71} \rightarrow$	(156324)	$P_{101} \rightarrow$	(145362)
$P_{12} \rightarrow$	(153246)	$P_{42} \rightarrow$	(164235)	$P_{72} \rightarrow$	(165324)	$P_{102} \rightarrow$	(154362)
$P_{13} \rightarrow$	(124536)	$P_{43} \rightarrow$	(134625)	$P_{73} \rightarrow$	(124563)	$P_{103} \rightarrow$	(134652)
$P_{14} \rightarrow$	(142536)	$\mathrm{P}_{44} \rightarrow$	(143625)	$P_{74} \rightarrow$	(142563)	$P_{104} \rightarrow$	(143652)
$P_{15} \rightarrow$	(125436)	$P_{45} \rightarrow$	(136425)	$P_{75} \rightarrow$	(125463)	$P_{105} \rightarrow$	(136452)
$P_{16} \rightarrow$	(152436)	$P_{46} \rightarrow$	(163425)	$P_{76} \rightarrow$	(152463)	$P_{106} \rightarrow$	(163452)
$P_{17} \rightarrow$	(145236)	$P_{47} \rightarrow$	(146325)	$P_{77} \rightarrow$	(145263)	$P_{107} \rightarrow$	(146352)
$P_{18} \rightarrow$	(154236)	$\mathrm{P}_{48} \rightarrow$	(164325)	$P_{78} \rightarrow$	(154263)	$P_{108} \rightarrow$	(164352)
$P_{19} \rightarrow$	(134526)	$P_{49} \rightarrow$	(123564)	$P_{79} \rightarrow$	(124653)	$P_{109} \rightarrow$	(135642)
$P_{20} \rightarrow$	(143526)	$P_{50} \rightarrow$	(132564)	$P_{80} \rightarrow$	(142653)	$P_{110} \rightarrow$	(153642)
$P_{21} \rightarrow$	(135426)	$P_{51} \rightarrow$	(125364)	$P_{81} \rightarrow$	(126453)	$P_{111} \rightarrow$	(136542)
$P_{22} \rightarrow$	(153426)	$P_{52} \rightarrow$	(152364)	$P_{82} \rightarrow$	(162453)	$P_{112} \rightarrow$	(163542)
$P_{23} \rightarrow$	(145326)	$P_{53} \rightarrow$	(135264)	$P_{83} \rightarrow$	(146253)	$P_{113} \rightarrow$	(156342)
$P_{24} \rightarrow$	(154326)	$P_{54} \rightarrow$	(153264)	$P_{84} \rightarrow$	(164253)	$P_{114} \rightarrow$	(165342)
$P_{25} \rightarrow$	(123465)	$P_{55} \rightarrow$	(123654)	$P_{85} \rightarrow$	(125643)	$P_{115} \rightarrow$	(145632)
$P_{26} \rightarrow$	(132465)	$P_{56} \rightarrow$	(132654)	$P_{86} \rightarrow$	(152643)	$P_{116} \rightarrow$	(154632)
$P_{27} \rightarrow$	(124365)	$P_{57} \rightarrow$	(126354)	$P_{87} \rightarrow$	(126543)	$P_{117} \rightarrow$	(146532)
$P_{28} \rightarrow$	(142365)	$P_{58} \rightarrow$	(162354)	$P_{88} \rightarrow$	(162543)	$P_{118} \rightarrow$	(164532)
$P_{29} \rightarrow$	(134265)	$P_{59} \rightarrow$	(136254)	$P_{89} \rightarrow$	(156243)	$P_{119} \rightarrow$	(156432)
$P_{30} \rightarrow$	(143265)	$P_{60} \rightarrow$	(163254)	${ }_{90} \rightarrow$	(165243)	$P_{120} \rightarrow$	(165432)

Tab. 1. Names of Cyclic Permutations of 6-elements set.
G, any F^{i} is exactly represented by $\operatorname{rot}_{D}\left(t_{i}\right)$. All cyclic permutations of six elements can be generated by the algorithm [2], and they are collected in Tab. 1.
We will dealt with only drawings of the graph G with a possibility of an existence of a subgraph $T_{i} \in R_{D}$ because of arguments in the proof of the main Theorem 1. Assume a good drawing D of the graph $G+D_{n}$ in which the edges of G does not cross each other. In this case, without loss of generality, we can choose the vertex notations of the graph in such a way as shown in Fig. 1(a). It is easy to see that, in D, there are only four different possible configurations of F^{i} summarized in Tab. 2. In the rest of the paper, each cyclic permutation will be represented by the permutation with 1 in the first position. As for our considerations does not play role which of the regions is unbounded, assume the drawings shown in Figure 2. In a fixed drawing of the graph $G+D_{n}$, some configurations from the set $\mathcal{M}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ do not must appear. We denote by \mathcal{M}_{D} the set of all configurations that exist in the drawing D belonging to \mathcal{M}.

Fig. 2. Drawings of four possible configurations of graph F^{i} with the vertices of G denoted as in Fig. 1(a).

$A_{1}:(125643)$	$A_{2}:(132546)$
$A_{3}:(125463)$	$A_{4}:(132564)$

Tab. 2. Configurations of graph F^{i} with the vertices of G denoted as in Fig. 1(a).

-	A_{1}	A_{2}	A_{3}	A_{4}
A_{1}	6	4	5	5
A_{2}	4	6	5	5
A_{3}	5	5	6	5
A_{4}	5	5	5	6

Tab. 3. Lower-bounds of numbers of crossings for two configurations from \mathcal{M}.

Let X, Y be the configurations from \mathcal{M}_{D}. We shortly denote by $\operatorname{cr}_{D}(X, Y)$ the number of crossings in D between T^{i} and T^{j} for different $T^{i}, T^{j} \in R_{D}$ such that F^{i}, F^{j} have configurations X, Y, respectively. Finally, let $\operatorname{cr}(X, Y)=\min \left\{\operatorname{cr}_{D}(X, Y)\right\}$ over all good drawings of the graph $G+D_{n}$. In the next statements we are able to use the possibilities of the algorithm of the cyclic permutations of 6 -elements set, see [2]. By $\overline{P_{i}}$ we will understand the inverse cyclic permutation to the permutation P_{i}, for $i=1, \ldots, 120$. Woodall [13] defined the cyclic-ordered graph $C O G$ with the set of vertices $V=\left\{P_{1}, P_{2}, \ldots, P_{120}\right\}$, and with the set of edges E, where two vertices are joined by the edge if the vertices correspond to the permutations P_{i} and P_{j}, which are formed by the exchange of exactly two adjacent elements of the 6 -tuple (i.e. an ordered set with 6 elements). Hence, if $d_{C O G}\left(" \operatorname{rot}_{D}\left(t_{i}\right) ", " \operatorname{rot}_{D}\left(t_{j}\right) "\right)$ denotes the distance between two vertices correspond to the cyclic permutations $\operatorname{rot}_{D}\left(t_{i}\right)$ and $\operatorname{rot}_{D}\left(t_{j}\right)$ in the graph $C O G$, then

$$
d_{C O G}\left(" \operatorname{rot}_{D}\left(t_{i}\right) ", " \overline{\operatorname{rot}_{D}\left(t_{j}\right)} "\right)=Q\left(\operatorname{rot}_{D}\left(t_{i}\right), \operatorname{rot}_{D}\left(t_{j}\right)\right) \leq \operatorname{cr}_{D}\left(T^{i}, T^{j}\right)
$$

for any two different subgraphs T^{i} and T^{j}. The configurations A_{1} and A_{2} are represented by the cyclic permutations $P_{85}=(125643)$ and $P_{8}=(132546)$, respectively. Using $\overline{P_{8}}=(164523)=P_{94}$ and $d_{C O G}\left(" P_{85} ", " P_{94} "\right)=4$ we obtain $\operatorname{cr}\left(A_{1}, A_{2}\right) \geq 4$. The same reason gives $\operatorname{cr}\left(A_{1}, A_{3}\right) \geq 5$, $\operatorname{cr}\left(A_{1}, A_{4}\right) \geq 5, \operatorname{cr}\left(A_{2}, A_{3}\right) \geq 5, \operatorname{cr}\left(A_{2}, A_{4}\right) \geq 5$ and $\operatorname{cr}\left(A_{3}, A_{4}\right) \geq 4$. Moreover, by a discussion of possible subdrawings, we can verify that $\operatorname{cr}\left(A_{3}, A_{4}\right) \geq 5$. Clearly, also $\operatorname{cr}\left(A_{k}, A_{k}\right) \geq 6$ holds for any $k=1, \ldots, 4$. Thus, all lower-bounds of number of crossing of configurations from \mathcal{M} are summarized in Tab. 3.

2.2 Main results

Lemma 1 Let D be a good drawing of $G+D_{n}, n>2$, in which $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \neq 0$ for any different subgraphs T^{i} and T^{j}. Let $2\left|R_{D}\right|+\left|S_{D}\right|>2 n-2\left\lfloor\frac{n}{2}\right\rfloor$ and let $T^{n}, T^{n-1} \in R_{D}$ be different subgraphs with $\operatorname{cr}_{D}\left(T^{n} \cup T^{n-1}\right) \geq 4$. If both conditions

$$
\begin{array}{rr}
\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{n-1}, T^{i}\right) \geq 10 & \text { for any } T^{i} \in R_{D} \backslash\left\{T^{n}, T^{n-1}\right\} \\
\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{n-1}, T^{i}\right) \geq 7 & \text { for any } T^{i} \in S_{D} \tag{3}
\end{array}
$$

hold, then there are at least $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings in D.

Proof. We denote by $r=\left|R_{D}\right|$ and $s=\left|S_{D}\right|$. By the assumption of lemma, any $T^{i} \notin R_{D} \cup S_{D}$ satisfies the condition $\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{n-1}, T^{i}\right) \geq 4$, and the number of T^{i} that cross the graph G at least two times is equal to $n-r-s$. By fixing of the graph $G \cup T^{n} \cup T^{n-1}$ we have

$$
\begin{gathered}
\operatorname{cr}_{D}\left(G+D_{n}\right)=\operatorname{cr}_{D}\left(K_{6, n-2}\right)+\operatorname{cr}_{D}\left(K_{6, n-2}, G \cup T^{n} \cup T^{n-1}\right)+\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{n-1}\right) \geq \\
\geq 6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+10(r-2)+7 s+4(n-r-s)+4=6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+6 r+3 s+4 n-16 \geq \\
\geq 6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+3\left(2 n-2\left\lfloor\frac{n}{2}\right\rfloor+1\right)+4 n-16 \geq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor .
\end{gathered}
$$

This completes the proof.

Lemma 2 Let D be a good drawing of $G+D_{n}$ with the vertex notations of the graph G as in Fig. 1(a), $n>2$. If $T^{n} \in R_{D}$ such that F^{n} has configuration $A_{i} \in \mathcal{M}_{D}$, for $i=1,3,4$, then

$$
\begin{equation*}
\operatorname{cr}_{D}\left(T^{n}, T^{k}\right) \geq 3 \quad \text { for any } T^{k} \in S_{D} \tag{4}
\end{equation*}
$$

Proof. Let, in D, the graph F^{n} has configuration A_{1}. If $T^{k} \in S_{D}$ with $\operatorname{cr}_{D}\left(T^{n}, T^{k}\right)=2$, then the vertex t_{k} must be placed in a region with at least three vertices of G on its boundary, see Fig. 2. Since $T^{k} \in S_{D}$, the vertex t_{k} cannot be placed in the region bounded by 4-cycle of the graph G. Moreover, if t_{k} is placed in another regions, then $\operatorname{cr}_{D}\left(F^{n}, T^{k}\right)>3$. The same idea can be used for configurations A_{3} and A_{4}. This completes the proof.
Remark that the property (4) is not true for configuration A_{2}, see the proof of the following statement.
Collorary 1 Let D be a good drawing of $G+D_{n}$ with the vertex notations of the graph G as in Fig. $1(a), n>2$, in which $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \neq 0$ for any different subgraphs T^{i} and T^{j}. If $T^{n}, T^{n-1} \in R_{D}$ such that F^{n}, F^{n-1} have configurations A_{1}, A_{2}, respectively, then

$$
\begin{equation*}
\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{n-1}, T^{k}\right) \geq 7 \quad \text { for any } T^{k} \in S_{D} \tag{5}
\end{equation*}
$$

Proof. Let, in D, the graphs F^{n}, F^{n-1} have configurations A_{1}, A_{2}, respectively. The configurations A_{1} and A_{2} are represented by the cyclic permutations $P_{85}=(125643)$ and $P_{8}=(132546)$, respectively.

- If there is a subgraph $T^{k} \in S_{D}$ with $\operatorname{cr}_{D}\left(T^{n-1}, T^{k}\right)=2$, then the vertex t_{k} must be placed in the region with four vertices of G and one vertex t_{n-1} on its boundary, see Fig. 2. Thus, the graph $F^{k}=G \cup T^{k}$ can be represented only by two possible cyclic permutations $P_{81}=$ (126453) and $P_{95}=(156423)$. By the above mentioned algorithm we have

$$
d_{C O G}\left(" P_{26} ", " P_{85} "\right)=d_{C O G}\left(" P_{99} ", " P_{85} "\right)=4,
$$

where $\overline{P_{81}}=(135462)=P_{99}$ and $\overline{P_{95}}=(132465)=P_{26}$. By the properties of the cyclic permutations we have $\operatorname{cr}_{D}\left(T^{n}, T^{k}\right) \geq 4$. Thus, $\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{n-1}, T^{k}\right) \geq 1+4+2=7$.

- If $\operatorname{cr}_{D}\left(T^{n-1}, T^{k}\right) \geq 3$ for any subgraph $T^{k} \in S_{D}$, then $\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{n-1}, T^{k}\right) \geq 1+3+3=7$.

Fig. 3. Two good drawings of $G+D_{n}$.

Theorem $1 \operatorname{cr}\left(G+D_{n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 1$.

Proof. In Fig. 3 there are the drawings of $G+D_{n}$ with $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings. Thus, $\operatorname{cr}\left(G+D_{n}\right) \leq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$. We prove the reverse inequality by induction on n. The graph $G+D_{1}$ is planar, hence $\operatorname{cr}\left(G+D_{1}\right)=0$. It is clear from Fig. 1(b) that $\operatorname{cr}\left(G+D_{2}\right) \leq 2$. The graph $G+D_{2}$ contains a subdivision of $K_{3,4}$, and therefore $\operatorname{cr}\left(G+D_{2}\right) \geq 2$. So, $\operatorname{cr}\left(G+D_{2}\right)=2$ and the result is true for $n=1$ and $n=2$.

Suppose now that, for $n \geq 3$, there is a drawing D with

$$
\begin{equation*}
\operatorname{cr}_{D}\left(G+D_{n}\right)<6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor, \tag{6}
\end{equation*}
$$

and let

$$
\begin{equation*}
\operatorname{cr}\left(G+D_{m}\right) \geq 6\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor+2\left\lfloor\frac{m}{2}\right\rfloor \quad \text { for any } m<n . \tag{7}
\end{equation*}
$$

The drawing D has the following property:

$$
\begin{equation*}
\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \neq 0 \quad \text { for all } i, j=1,2, \ldots, n, i \neq j \tag{8}
\end{equation*}
$$

To prove it assume that there are two different subgraphs T^{i} and T^{j} such that $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right)=0$. Without loss of generality let $\mathrm{cr}_{D}\left(T^{n-1}, T^{n}\right)=0$. One can easy to verify that $\mathrm{cr}_{D}\left(G, T^{n-1} \cup T^{n}\right) \geq 2$.

As $\operatorname{cr}\left(K_{6,3}\right)=6$, we have $\operatorname{cr}_{D}\left(T^{k}, T^{n-1} \cup T^{n}\right) \geq 6$ for $k=1,2, \ldots, n-2$. So, for the number of crossings in D holds

$$
\begin{aligned}
& \operatorname{cr}_{D}\left(G+D_{n}\right)=\operatorname{cr}_{D}\left(G+D_{n-2}\right)+\operatorname{cr}_{D}\left(T^{n-1} \cup T^{n}\right)+\operatorname{cr}_{D}\left(K_{6, n-2}, T^{n-1} \cup T^{n}\right)+\operatorname{cr}_{D}\left(G, T^{n-1} \cup T^{n}\right) \geq \\
& \geq 6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+2\left\lfloor\frac{n-2}{2}\right\rfloor+6(n-2)+2=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

This contradicts (6), and therefore $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \neq 0$ for all $i, j=1,2, \ldots, n, i \neq j$. Our assumption on D together with $\operatorname{cr}\left(K_{6, n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ implies that

$$
\operatorname{cr}_{D}(G)+\operatorname{cr}_{D}\left(G, K_{6, n}\right)<2\left\lfloor\frac{n}{2}\right\rfloor .
$$

Hence, if we denote $r=\left|R_{D}\right|$ and $s=\left|S_{D}\right|$, then

$$
0 r+1 s+2(n-r-s)<2\left\lfloor\frac{n}{2}\right\rfloor
$$

Thus, $r \geq 1$ and $2 r+s>2 n-2\left\lfloor\frac{n}{2}\right\rfloor$. We will fix one or two subgraphs with a contradiction with the assumption that there are less than $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings in the following cases:
Case 1: $\operatorname{cr}_{D}(G)=0$.
We will deal with the sets of configurations $\left\{A_{1}, A_{2}\right\}$ in the drawing D.

1) $\left\{A_{1}, A_{2}\right\} \nsubseteq \mathcal{M}_{D}$.
a) Let $A_{2} \notin \mathcal{M}_{D}$ and $A_{i} \in \mathcal{M}_{D}$ for some $i \in\{1,3,4\}$, or let $A_{2} \in \mathcal{M}_{D}$ and $A_{i} \in \mathcal{M}_{D}$ for some $i \in\{3,4\}$. Without lost of generality, we can assume that $T^{n} \in R_{D}$ with F^{n} having configuration A_{i}. Thus, by fixing of the graph F^{n} using Lemma 2 we have

$$
\begin{aligned}
& \operatorname{cr}_{D}\left(G+D_{n}\right)= \operatorname{cr}_{D}\left(K_{6, n-1}\right)+\operatorname{cr}_{D}\left(K_{6, n-1}, G \cup T^{n}\right)+\operatorname{cr}_{D}\left(G \cup T^{n}\right) \geq 6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+ \\
&+5(r-1)+4 s+3(n-r-s)=6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+2 r+s+3 n-5 \geq 6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+ \\
&+2 n-2\left\lfloor\frac{n}{2}\right\rfloor+1+3 n-5 \geq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

b) Let $\mathcal{M}_{D}=\left\{A_{2}\right\}$ and, without lost of generality, let $T^{n} \in R_{D}$.

If there is no $T^{k} \in S_{D}$ with $\operatorname{cr}_{D}\left(T^{n}, T^{k}\right)=2$, then we fix the graph F^{n} having configuration A_{2} and we obtain the same inequalities as in the previous case. So, assume that there is a subgraph $T^{k} \in S_{D}$ with $\operatorname{cr}_{D}\left(T^{n}, T^{k}\right)=2$. We can easily verify that $\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{k}, T^{i}\right) \geq 6+2=8$ for any $T^{i} \in R_{D}$, because both F^{n} and F^{i} have configuration A_{2}. Similarly by a discussion for two possible drawings of the graph T^{k}, see the proof of Corollary 1 , we can verify that $\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{k}, T^{i}\right) \geq 7$ for any $T^{i} \in S_{D}$ and $\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{k}, T^{i}\right) \geq 6$ for any $T^{i} \notin R_{D} \cup S_{D}$. Thus, by fixing of the graph $G \cup T^{n} \cup T^{k}$ we have

$$
\begin{aligned}
& \operatorname{cr}_{D}\left(G+D_{n}\right)=\operatorname{cr}_{D}\left(K_{6, n-2}\right)+\operatorname{cr}_{D}\left(K_{6, n-2}, G \cup T^{n} \cup T^{k}\right)+\operatorname{cr}_{D}\left(G \cup T^{n} \cup T^{k}\right) \geq \\
\geq & 6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+8(r-1)+7 s+6(n-r-s)+3=6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+2 r+s+ \\
+ & 6 n-12 \geq 6\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+2 n-2\left\lfloor\frac{n}{2}\right\rfloor+1+6 n-12 \geq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

2) $\left\{A_{1}, A_{2}\right\} \subseteq \mathcal{M}_{D}$.

Without lost of generality let us fix any two $T^{n}, T^{n-1} \in R_{D}$ such that F^{n}, F^{n-1} have configurations A_{1}, A_{2}, respectively. Then condition (2) is true by Tab. 3 and condition (3) holds by Corollary 1. Thus, all assumption of Lemma 1 are fulfilled.

Case 2: $\operatorname{cr}_{D}(G)=1$.

(a)

(b)

(c)

(d)

Fig. 4. Four possible drawings of the graph G with one crossing among its edges.
Since $r \geq 1$, without lost of generality we assume $T^{n} \in R_{D}$. In all four possible drawing of the graph G it is possible to verify that $\mathrm{cr}_{D}\left(G \cup T^{n}, T^{i}\right) \geq 4$ for any subgraph $T^{i}, i=1, \ldots, n-1$. Thus, by fixing of the graph F^{n} we obtain

$$
\begin{aligned}
& \operatorname{cr}_{D}\left(G+D_{n}\right)=\operatorname{cr}_{D}\left(K_{6, n-1}\right)+\operatorname{cr}_{D}\left(K_{6, n-1}, G \cup T^{n}\right)+\operatorname{cr}_{D}\left(G \cup T^{n}\right) \geq \\
& \quad \geq 6\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+4(n-1)+1 \geq 6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

Case 3: $\operatorname{cr}_{D}(G) \geq 2$.
We are able to use the same idea as in the previous case for all possible drawing of the graph G with a possibility of an existence of a subgraph $T^{i} \in R_{D}$ in the considering drawing D.
This completes the proof of the main theorem.

2.3 Corollaries

Fig. 5. Four graphs G_{1}, G_{2}, G_{3}, and G_{4} by adding new edges to the graph G.
In Fig. 2 we are able to add some edges to the graph G without another crossings. So the drawing of the graphs $G_{1}+D_{n}, G_{2}+D_{n}, G_{3}+D_{n}$, and $G_{4}+D_{n}$ with $6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ crossings is obtained. Thus, the next results are obvious.

Collorary $2 \operatorname{cr}\left(G_{i}+D_{n}\right)=6\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2\left\lfloor\frac{n}{2}\right\rfloor$ for $n \geq 1$, where $i=1, \ldots, 4$.

Remark that the crossing numbers of the graphs $G_{3}+D_{n}$ and $G_{4}+D_{n}$ were obtained in [8], [5] without using the vertex rotation.

3 Acknowledgments

The research was supported by the Slovak VEGA grant No. 1/0389/15. The research was also supported by the internal faculty research project no. FEI-2017-39.

References

[1] BEREŽNÝ, Š., STAŠ, M.: On the crosing number of the join of five vertex graph G with the discrete graph D_{n}, Acta Electrotechnica et Informatica, vol. 17, no. 3, (2017), pp. 27-32.
[2] BEREŽNÝ, Š., BUŠA, J., STAŠ, M.: Software solution of the algorithm of the cyclic-order graph, Acta Electrotechnica et Informatica, vol. 18, no. 1, (2018), pp. 3-10.
[3] HERNÁNDEZ-VÉLEZ, C., MEDINA, C., SALAZAR, G.: The optimal drawing of $K_{5, n}$, Electronic Journal of Combinatorics, vol. 21, no. 4, (2014), p. 29.
[4] KLEŠČ, M.: The join of graphs and crossings numbers, Electron. Notes Discrete Math., vol. 28, (2007), pp. 349-355.
[5] KLEŠČ, M.: The crossing number of join of the special graph on six vertices with path and cycle, Dicrete Math., vol. 310, (2010), pp. 1475-1481.
[6] KLEŠČ, M., SCHRÖTTER, Š.: The crossing numbers of join products of paths with graphs of order four, Discussiones Mathematicae Graph Theory, vol. 31, (2011), pp. 312-331.
[7] KLEŠČ, M., SCHRÖTTER, Š.: The crossing numbers of join of paths and cycles with two graphs of order five, Mathematical Modeling and Computational Science, vol. 7125, (2012), pp. 160-167.
[8] KLEŠČ, M., SCHRÖTTER, Š.: On the crossing numbers of cartesian products of stars and graphs of order six, Discussiones Mathematicae Graph Theory, vol. 33, (2013), pp. 583-597.
[9] KLEŠČ, M., KRAVECOVÁ, D., PETRILLOVÁ, J.: The crossing number of join of special graphs, Electrical Engineering and Informatics 2, (2011), pp. 522-527.
[10] KLEŠČ, M., VALO, M.: Minimum crossings in join of graphs with paths and cycles, Acta Electrotechnica et Informatica, vol. 12, (2012), pp. 32-37.
[11] STAŠ, M.: On the crossing number of the join of the discrete graph with one graph of order five, Mathematical Modelling and Geometry, vol. 5, no. 2, (2017), pp. 12-19.
[12] KLEITMAN, D. J.: The crossing number of $K_{5, n}$, J. Combinatorial Theory, vol. 9, (1970), pp. 315-323.
[13] WOODALL, D. R.: Cyclic-order graphs and Zarankiewicz's crossings number conjucture, J. Graph Theory, vol. 17, (1993), pp. 657-671.

Current address

Staš Michal, RNDr., PhD.

Department of Mathematics and Theoretical Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 04200 Košice, Slovak Republic
E-mail: michal.stas@tuke.sk

