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Abstract. The paper summarizes fuzzy linear models that were introduced in fuzzy regression
analysis. The exhaustive review is extended with new models. This contribution is intended
as a guide for implementing known fuzzy regression methods. However, it can be used as an
inspiration for researchers developing new approaches.
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Fuzzy linear regression analysis is a vital alternative to commonly used statistics-based regression
methods. In the fuzzy linear regression analysis, a wide variety of fuzzy linear models can be used
for approximation of a linear dependence, according to a set of observations. To orient the user in
selection of an appropriate model, we issue an exhaustive review of fuzzy linear models that were
expected while developing model parameter estimators. We provided the models with references
on parameter estimators. We also introduced new fuzzy linear models that can be used in fuzzy
regression. We classified the models into three categories according to datatype they are intended
for. We also provided remarks on model features from the perspective of model predictions. The
review is intended as a guide for implementing fuzzy regression estimators as well as an inspiration
for researchers developing new parameter estimation methods aimed at fuzzy data.

1 Introduction
Fuzzy regression analysis is an alternative to the commonly used statistical regression analysis. Both
in fuzzy regression analysis and in statistical regression analysis, a regression model is used to de-
scribe a functional relationship between a dependent y and independent variables x. Parameters of
the model are estimated utilizing a set of observations of the variables x and y. With estimated
parameters, the regression model can be used for prediction of the dependent variable value for a
specific combination of the independent variable values. While any deviation of the prediction from
the corresponding observation is supposed to be due to a random error or measurement errors in the
statistical regression, the fuzzy regression expects the deviations due to fuzziness. The fuzziness can
be inherently given by the nature of observations (e.g. observations described by linguistic terms)
[31, 27, 24]; however, it can also be due to the imprecise observed data or the indefiniteness of the
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system structure and parameters [3]. The fuzzy regression is also a viable alternative to statistical
regression when the dataset is insufficient to support statistical regression analysis [20].

Probably the most commonly used model in statistical regression analysis is a linear model. In fuzzy
regression analysis, the linear dependence of y on x is also most often expected. However, the fuzzy
regression analysis offers several fuzzy models that can be used to approximate the expected depen-
dence. The observations of the dependent and independent variables can be either real value numbers
x, y or fuzzy numbers X̃, Ỹ . In this paper, we bring an exhaustive review of fuzzy models that were
expected during development of model parameter estimators. We provide the models with refer-
ences on parameter estimators. We also present new fuzzy linear models that can be used in fuzzy
regression. The referred fuzzy models are classified into three categories according to the type of
observations they are intended for. We further provide remarks on model features from a perspective
of model predictions.

2 Preliminaries
This section originates from [2, 36].

2.1 Fuzzy numbers

Definition 1. A fuzzy set A defined on a universe X of elements x is defined by a mapping µA :
X → [0, 1], where µA(x) is the membership degree of x to the fuzzy set A, µA(x) = 1 means full
membership of x inA, and µA(x) = 0 expresses non-membership. If a fuzzy set has a positive degree
of membership to a single element x ∈ X , then the set is called fuzzy singleton.

Definition 2. Let A be a fuzzy set defined on the universe X of elements x. The set of elements that
belong to the fuzzy set A at least to a degree α is called α-level set and it is given as

Aα = {x ∈ X|µA(x) ≥ α} ,

where 0 < α ≤ 1. The α-level set of A for α = 1 is called a core of the fuzzy set A.

Definition 3. A fuzzy subset Ã defined on R with membership function µÃ : R → [0, 1] is called a
fuzzy number if

(a) µÃ is normal, i.e. ∃x0 ∈ R with µÃ(x0) = 1,
(b) µÃ is fuzzy convex, (i.e. µÃ(tx+ (1− t)y) ≥ min {µÃ(x), µÃ(y)} ,∀t ∈ [0, 1], x, y ∈ R),
(c) µÃ is upper semi-continuous on R (i.e. ∀ε > 0∃δ > 0: µÃ(x)− µÃ(x0) < ε, |x− x0| < δ),
(d) µÃ is compactly supported, i.e. cl {x ∈ R;µÃ(x) > 0} is compact, where cl (A) denotes the

closure of the set A.

Let us denote by RF the space of fuzzy numbers.

Remark. A real number a ∈ R is also a fuzzy number Ã ∈ RF which has the positive degree of
membership only for the element a, i.e. the fuzzy number Ã is the fuzzy singleton. Such numbers are
called crisp numbers.

Definition 4. Let L and R be continuous decreasing functions L,R : [0,+∞) → [0, 1] fulfilling
L(0) = R(0) = 1 and L(1) = R(1) = 0, invertible on [0, 1]. Moreover, let mL

Ã
,mR

Ã
∈ R, where
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mL
Ã
≤ mR

Ã
, and αÃ, βÃ ∈ R+; then a fuzzy set Ã is said to be an L-R type fuzzy number, if its

membership function is

µÃ =


L
(
mL

Ã
−x

αÃ

)
, x < mL

Ã
,

1, mL
Ã
≤ x ≤ mR

Ã
,

R
(
x−mR

Ã

βÃ

)
, x > mR

Ã
,

where mL
Ã

and mR
Ã

are the left and the right points of the core, and αÃ and βÃ are the left and the right
spread of the fuzzy number Ã. The L-R type fuzzy number Ã can be written as

Ã =
(
mL
Ã
,mR

Ã
, αÃ, βÃ

)
LR
.

2.2 Fuzzy algebra

Using the extension principle [34], fuzzy algebra can be developed for the L-R type fuzzy numbers.

Definition 5. The r-level set of the fuzzy number Ã is defined as Ãr = {x ∈ R|µÃ(x) ≥ r}. The set
Ãr is a closed interval Ãr = [Ã−r , Ã

+
r ].

Definition 6. Scalar multiplication (λ · Ã) is multiplication between the real number λ ∈ R and the
fuzzy number Ã ∈ RF where (λ · Ã) ∈ RF . This operation is defined as

(λ · Ã)r =
{
λx
∣∣∣x ∈ Ãr} = λÃr, ∀r ∈ [0, 1].

Note that λÃr is the usual product of a number and a subset of R. For any λ, κ ∈ R and Ã ∈ RF , it
holds that

(λκ) · Ã = λ · (κ · Ã).

Remark. It holds that ((λ · Ã)+r − (λ · Ã)−r ) ≥ (Ã+
r − Ã−r ) for |λ| ≥ 1, ∀r ∈ [0, 1]; and ((λ · Ã)+r −

(λ · Ã)−r ) < (Ã+
r − Ã−r ) for |λ| < 1,∀r ∈ [0, 1].

Definition 7. Sum of two fuzzy numbers Ã and B̃, Ã⊕ B̃, where Ã, B̃, (Ã⊕ B̃) ∈ RF , is given as

(Ã⊕ B̃)r =
{
x+ y

∣∣∣x ∈ Ã, y ∈ B̃} = Ãr + B̃r,∀r ∈ [0, 1].

(a) The sum of fuzzy numbers is commutative and associative, i.e.

Ã⊕ B̃ = B̃ ⊕ Ã

and
Ã⊕ (B̃ ⊕ C̃) = (Ã⊕ B̃)⊕ C̃,∀Ã, B̃, C̃ ∈ RF .

(b) The fuzzy singleton 0̃ ∈ RF (i.e. µ0̃(x) = 1 for x = 0 and µ0̃(x) = 0 for x 6= 0) is the neutral
element with respect to (w.r.t.) ⊕, i.e.

Ã⊕ 0̃ = 0̃⊕ Ã = Ã

for any Ã ∈ RF .
(c) None of Ã ∈ RF \ R has an opposite in RF (w.r.t. ⊕).
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(d) For any λ, κ ∈ R with (λκ) ≥ 0 and any Ã ∈ RF , we have the distributive law

(λ+ κ) · Ã = λ · Ã⊕ κ · Ã.

This property does not hold for any λ, κ ∈ R.
(e) For any λ ∈ R and Ã, B̃ ∈ RF , the distributive law is fulfilled:

λ · (Ã⊕ B̃) = λ · Ã⊕ λ · B̃.

Remark. Ãr+B̃r is the sum of two intervals (as subsets of R). It means that ((Ã⊕B̃)+r −(Ã⊕B̃)−r ) ≥
max{(Ã+

r − Ã−r ), (B̃+
r − B̃−r )}, ∀r ∈ [0, 1].

Definition 8. Product of two fuzzy numbers Ã and B̃, Ã⊗ B̃, where Ã, B̃, (Ã⊗ B̃) ∈ RF , is defined
as

(Ã⊗ B̃)−r = min
{
Ã−r B̃

−
r , Ã

−
r B̃

+
r , Ã

+
r B̃
−
r , Ã

+
r B̃

+
r

}
,

and
(Ã⊗ B̃)+r = max

{
Ã−r B̃

−
r , Ã

−
r B̃

+
r , Ã

+
r B̃
−
r , Ã

+
r B̃

+
r

}
,∀r ∈ [0, 1].

(a) The fuzzy singleton set 1̃ ∈ RF (i.e. µ1̃(x) = 1 for x = 1 and µ1̃(x) = 0 for x 6= 1) is the neutral
element w.r.t. ⊗, i.e.

Ã⊗ 1̃ = 1̃⊗ Ã = Ã,

for any Ã ∈ RF .
(b) None of Ã ∈ RF \ R has an opposite in RF (w.r.t. ⊗).
(c) For any Ã, B̃, C̃ ∈ RF we have

((Ã⊕ B̃)⊗ C̃)r ⊆ (Ã⊗ C̃)r + (B̃ ⊗ C̃)r,∀r ∈ [0, 1].

and, in general, distributivity does not hold.
(d) For any Ã, B̃, C̃ ∈ RF , where none of the supports of Ã, B̃, C̃ contain 0, we have

Ã⊗ (B̃ ⊗ C̃) = (Ã⊗ B̃)⊗ C̃.

3 Fuzzy linear models
Fuzzy linear models describe linear relations between the independent variables x and the dependent
variable y. The models differ in expected datatypes of the variables x, y, in datatypes of model
parameters, as well as in number of the parameters. Since the model selection is primarily datatype
driven, we used the datatype as the feature for classification of the models.

3.1 Models for fuzzy dependent and fuzzy independent variables

Fuzzy models belonging to this category, expect that observations of the dependent y, as well as
observations of all m independent variables x are fuzzy numbers, i.e. X̃i, Ỹ ∈ RF ,∀i ∈ {1, . . . ,m}.
The extensively used model of this category [9, 29, 28, 10, 15, 23, 30, 18, 19, 21] is given as

Ỹ = Ã0 ⊕
(
Ã1 ⊗ X̃1

)
⊕ . . .⊕

(
Ãm ⊗ X̃m

)
, (1)

where Ã denotes fuzzy parameters of the regression model, and Ãi ∈ RF ,∀i ∈ {0, . . . ,m}.
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Other fuzzy linear models of this category can be inferred from the model (1) through specifying
some model parameters as real value numbers. In our search, we found three such models that were
used in development of parameter estimators. The first model expects that all parameters, except the
intercept, are real value numbers a (i.e. ai ∈ R, ∀i ∈ {1, . . . ,m} and Ã0 ∈ RF ). The model is given
as

Ỹ = Ã0 ⊕ a1 · X̃1 ⊕ . . .⊕ am · X̃m. (2)

Parameter estimators for this model were introduced in [8, 32, 1].

The second model considers all parameters as real value numbers (i.e. ai ∈ R, ∀i ∈ {0, . . . ,m}). The
model is given as

Ỹ = a0 ⊕ a1 · X̃1 ⊕ . . .⊕ am · X̃m. (3)

Parameter estimators for this model were introduced in [22, 1, 14, 25].

The third model represents an extension of the fuzzy linear model (3) due to a fuzzy error term δ̃. The
model is given as

Ỹ = a0 ⊕ a1 · X̃1 ⊕ . . .⊕ am · X̃m ⊕ δ̃, (4)

where ai ∈ R,∀i ∈ {0, . . . ,m} and δ̃ ∈ RF . Parameter estimators for this model were introduced in
[16, 17, 5, 7, 6, 18].

The idea to extend fuzzy linear models with the fuzzy error term δ̃ can be applied to models (1) and
(2). By adding the fuzzy error term, new fuzzy linear models can be obtained. They are given as

Ỹ = Ã0 ⊕
(
Ã1 ⊗ X̃1

)
⊕ . . .⊕

(
Ãm ⊗ X̃m

)
⊕ δ̃, (5)

where δ̃, Ãi ∈ RF ,∀i ∈ {0, . . . ,m}; and

Ỹ = Ã0 ⊕ a1 · X̃1 ⊕ . . .⊕ am · X̃m ⊕ δ̃, (6)

where δ̃, Ã0 ∈ RF and ai ∈ R, ∀i ∈ {1, . . . ,m}. Note that these two models were not considered
yet by developers of the parameter estimators. Considering [7], we hypothesize that adding the fuzzy
error term might improve precision of the fuzzy linear regression.

3.2 Models for fuzzy dependent and real value independent variables

Fuzzy models belonging to this category expect that observations of all independent variables x are
real value numbers (xi ∈ R,∀i ∈ {1, . . . ,m}), and observations of the dependent variable y are fuzzy
numbers Ỹ ∈ RF . For such data, most of parameter estimators [12, 26, 4, 8, 33, 11, 15, 7, 1, 13, 18,
35] expect the linear dependence described by the model

Ỹ = Ã0 ⊕ Ã1 · x1 ⊕ . . .⊕ Ãm · xm, (7)

where Ãi ∈ RF ,∀i ∈ {0, . . . ,m}.

Derived from the model (7), new models can be obtained when some model parameters would be real
value numbers. Such a way, a parallel of the model (2) can be obtained. The new fuzzy linear model
is given as

Ỹ = Ã0 ⊕ (a1x1 + . . .+ amxm) , (8)

where ai ∈ R, ∀i ∈ {1, . . . ,m} and Ã0 ∈ RF . According to our search, no parameter estimator is
available for this model yet.
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Parameter estimator published in [7] considered an extension of the model (7) with the fuzzy error
term δ̃. The extended model is given as

Ỹ = Ã0 ⊕ Ã1 · x1 ⊕ . . .⊕ Ãm · xm ⊕ δ̃, (9)

where δ̃, Ãi ∈ RF ,∀i ∈ {0, . . . ,m}.

The extended model (9) can be simplified, when all parameters of the regression model are considered
as real value numbers, i.e.

Ỹ = (a0 + a1x1 + . . .+ amxm)⊕ δ̃, (10)

where δ̃ ∈ RF , and ai ∈ R,∀i ∈ {0, 1, . . . ,m}. An estimator based on this model was presented in
[18].

3.3 Models for real value dependent and fuzzy independent variables

The opposite of the previous category are fuzzy models that are intended for datasets where the
observations of the independent variables x are fuzzy numbers (X̃i ∈ RF ,∀i ∈ {1, . . . ,m}), while
the observation of the dependent variable y are real value numbers y ∈ R. To ensure the requirement
on the model output y, all parameters related to the fuzzy independent variables X̃ must be also fuzzy
numbers. The basic model of this category is given as

y = Ã0 ⊕
(
Ã1 ⊗ X̃1

)
⊕ . . .⊕

(
Ãm ⊗ X̃m

)
, (11)

where Ãi ∈ RF , ∀i ∈ {0, . . . ,m}. A parameter estimator for this model was presented in [10].

A new model can be obtained with the intercept represented as a real value number. Thus, the model
is given as

y = a0 ⊕
(
Ã1 ⊗ X̃1

)
⊕ . . .⊕

(
Ãm ⊗ X̃m

)
, (12)

where a0 ∈ R, and Ãi ∈ RF ,∀i ∈ {1, . . . ,m}. As far as we know, no parameter estimator was
designed for this model.

4 Model attributes
Since each real value number can be expressed as a fuzzy number, we can say that the fuzzy linear
model (5), respectively the model (1), are the general fuzzy linear models, and the remaining models
are their simplifications. However, existence of the simplified fuzzy linear models is well founded.
The simplified models have naturally implemented assumptions on model prediction in their struc-
tures. Let us demonstrate the importance of this fact on several examples.

Significance of prior assumptions on model predictions is best evident in models for real value de-
pendent and fuzzy independent variables. Models of this class are intended for applications where
real value predictions of the models are required. Parameter estimators based on such models provide
parameters that guarantee the desired model predictions, while parameter estimators based on the
general model (1) do not.

Another good example are models for fuzzy dependent and real value independent variables. Predic-
tions of these models are fuzzy numbers Ỹ =

(
mL
Ỹ
,mR

Ỹ
, αỸ , βỸ

)
LR

, where mL
Ỹ
,mR

Ỹ
are left and right

cores of the predictions Ỹ , and αỸ , βỸ are their left and right spreads. The fuzzy linear models (7)
and (9) are known for dependence of the model prediction spreads αỸ and βỸ on absolute values of
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the independent variables x [26, 7]. The fuzzy linear models (8) and (10), which belong to the same
class, have different properties. The spreads αỸ and βỸ are independent of x for these models [18].
Thus, the models (7) and (9) allow to model relationships where the prediction spreads are dependent
on x, while the models (8) and (10) are appropriate for relations with no correlation of the spreads
and x.

In this context, limitations of the models (7) and (9), arising from the essence of the fuzzy arithmetic,
should be mentioned. As stated above, the model prediction spreads αỸ and βỸ are dependent on
x for these two models. For positive values of x, the spreads increase with increasing values of x.
For negative values of x, the spreads decrease with increasing values of x. This limitation can be
overcome by translating the observations along x [3]. Using axes translations, decreasing spreads
αỸ , βỸ with increasing values of x for x ∈ R+; and increasing spreads αỸ , βỸ with decreasing values
of x for x ∈ R− can be achieved with these two models.

5 Conclusion
Here we provided user guidelines for selection of fuzzy linear models. From the wide variety of fuzzy
linear models, the appropriate model for a given dataset should be selected according to datatype
of the observations. However, the spreads of model predictions should respect the nature of the
approximated relation, and this fact should be reflected in the model selection as well. We hope
that the review will provide an inspiration for researchers developing new parameter estimators. To
support further development of the fuzzy regression, we proposed four new fuzzy linear models.
However, other new models can be introduced for fuzzy dependent and fuzzy independent variables,
and for fuzzy dependent and real value independent variables. Considering some model parameters
to be real value numbers, new fuzzy linear models can be formulated for these two model categories.
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