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Abstract.  The matching of an undirected graph G =(V , E)  is a subset M of E  such that no 
two edges of M are adjacent in G . The Hosoya index of a graph G  is given by the number 
of all matching of G . This graph invariant is one of the most interesting topological index in 
chemistry. Helicenes are extremal hexagonal chains with a simple graph representation as an 
important subclass of benzenoid molecules. We obtain the exact formula for the Hosoya 
index of the molecular graphs of helicenes as a function of the number of hexagons in it.  
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1 Introduction 

In this contribution, we consider undirected simple graphs (without loops of multiple edges). A sub-
set M  of the edge set of a graph G is called the matching if none two edges of M  are adjacent in 
G . Other graph terminology and notation is taken from the book [1]. Denote by ),( kGm  the num-

ber k -matching, which means the number of k  mutually independent edges can be selected in G .  

Definiti on 1. Let ( )EVG ,=  be a simple connected graph. By definition, 1)0,( =Gm  for all graphs,

and EGm =)1,( . The Hosoya index of G is given by ( )∑
≥

=
0

,)(
k

kGmGZ  as the number of all

matching in G . 

The chemist Haruo Hosoya introduced in 1971 a molecular graph based structure descriptor, which 
he named the topological index )(GZ . He showed that certain physico-chemical properties of 
saturated hydrocarbons, in particular their boiling points, are well correlated with )(GZ . The 
molecular structural descriptionZ was soon re-named into Hosoya index, whereas the name 
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topological index is used for any of the countless invariants that are found to have some chemical 
applicability [11]. 

Many authors found the Hosoya index for various classes of graphs or solved the problem of 
extremal values of the Hosoya index in special cases.  LV and YU [6] investigated the Hosoya 
index of trees with a given maximum vertex degree. Hamzeh et al.  [4] obtained exact formulas of 
the Hosoya index for the set of bicyclic graphs, caterpillars and dual star. Huang, Kuang and Deng 
[5] found the average values of the Hosoya index with respect to the set of all polyphenylene
chains. Wagner and Gutman [11] collected and classified the results on the extremal values of the
Hosoya index and also provided some useful tools and techniques that are frequently used in the
study of this type of problem.

A hexagonal system is a connected plane graph without cut-vertices in which all inner faces are the 
cycles of the length 6 (hexagons), such that two hexagons are either disjoint or have exactly one 
common edge, and none three hexagons share a common edge. Two hexagons of a system may 
have either two common vertices (if they are adjacent) or none (if they are not adjacent). A 
hexagonal chain with n  hexagons, 2≥n , possesses two terminal hexagons and 2−n  hexagons 
that have two neighbors. A hexagon adjacent to exactly two other hexagons possesses two vertices 
of degree 2. 

Denote nB  an arbitrary chain with n  hexagons and 3V  the set of its vertices of degree 3. The 

subgraph nB′  of nB  generated by 3V  is an acyclic graph [13]. If the subgraph nB′  is a matching with 

1−n  edges, then nB  is called a linear chain. If the subgraph nB′  is a path, then nB  is called a zigzag 

chain. Shiu [10] showed that the linear hexagonal spider and zig-zag hexagonal spider attain the 
extremal values of the Hosoya index. Gutman [3] reported some results on extremal hexagonal 
chains. 

If the subgraph nB′  is a comb, then nB  is called a helicene chain nH ( Fig.1.), where a comb is a 

graph obtained by joining a single pendant edge to each vertex of a path (see e.g. [9]). 

H5                                                                      H7

Fig. 1. The molecular graphs of [5]helicene and [7]helicene (the combs are drawn by bold lines).
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Carbohelicenes belong to a class of fascinating, chiral, and helicoidal molecules, which have a rich 
history in chemistry since the very beginning of the 20th century. Helicene chemistry is being 
considered as an expanding and modern field, leading to several applications in supramolecular 
chemistry, in nanosciences, in chemical-biology, in polymers and materials science. A 
comprehensive report on non-stereoselective reactions and methods for producing helicenes can be 
found in [2]. 

The main aim of this contribution is to derive the exact formula for the Hosoya index of the 
molecular graphs of helicenes nH  as a function of n . 

2 Preliminary results 

In this section, we review some basic and general properties of the Hosoya index (e.g. [4], [11]). 

Theorem 1. If G1, G2, … , Gm are the connected components of  a  graph G , then ( ) ( )∏
=

=
m

i
iGZGZ

1

. 

Theorem 2. Let  G  be a graph with at least two vertices and v  be its arbitrary vertex. Then 
( ) ( ) { }( )∑ −+−=

w
wvGZvGZGZ , , 

where the sum is taken over all the vertices w  adjacent to v. 

Theorem 3. Let vertices vu,  be the ends of an edge e in a graph G . Then 
( ) ( ) { }( )vuGZeGZGZ ,−+−= .

Using Theorem 2 or Theorem 3 it is easy to obtain the following values of the Hosoya index for 
special graphs. We just recall that the Fibonacci numbers nF  are defined by the second order 

recurrence nnn FFF += ++ 12 , with 1,0 10 == FF  and the Lucas numbers nL  satisfy the same 

recurrence but with the initial terms 1,2 10 == LL . 

Theorem 4. 
(a) ( ) 1+= nn FPZ , where nP  is a path with n  vertices, 

(b) ( ) nn LCZ = , where nC  is a cycle with n  vertices. 

Now, we will derive some auxiliary results to finding the Hosoya index for helicenes. Consider 
therefore the molecular graph nH  of  [ ]n helicene and its subgraphsnI , nJ , nK and nM  (Fig.2). 

 Hn 
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Fig. 2. The molecular graph nH of [ ]n helicene and its subgraphsnI , nJ , nK  and nM . 

Let us denote their Hosoya indices  ( ) nn hHZ = ,  ( ) nn iIZ = ,  ( ) nn jJZ = ,  ( ) nn kKZ =  and 

( ) nn mMZ = , for short. By direct using of Theorems 1-4 we can obtain the values of these indices 

for the small numbers of n . These values are collected in Tab. 1. 

n hn in jn kn mn 
1 18 13 5 3 3 
2 148 109 39 26 26 
3 1233 906 327 213 218 
4 10244 7531 2713 1778 1807 
5 85169 62605 22564 14764 15033 

Tab. 1. The Hosoya index of the graphs nH , nI , nJ , nK , nM  for 51 ≤≤ n . 

Lemma 1.  The terms of sequences { }nh , { }ni , { }nj , { }nk  and { }nm  satisfy the following difference 

equations for any 2≥n
 nnn jih +=  (1) 

 1−+++= nnnnn hmkji  (2) 

21 23 −− ++= nnnn hkkj  (3) 

 111 −−− ++= nnnn mjhk  (4) 

 211 2 −−− ++= nnnn hkhm (5)
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Proof.  
Relation (1) – Using Theorem 3 we choose the edge e of the graph nH  as in Fig. 3. Then we have 

directly ( ) ( ) ( )nnn JZIZHZ += . 

Relation (2) – Using Theorem 2 two times (see Fig. 3) we have successively 
( ) ( ) { }( ) =−+−= 111 ,wvIZvIZIZ nnn

( ) ( ) ( ) { }( ) ( ) { }( )222222 ,, wvIZvIZwvIZvIZIZIZ nnnnnn −′′+−′′+−′+−′=′′+′= , but it means that 

( ) ( ) ( ) ( ) ( )1−+++= nnnnn HZMZKZJZIZ  which was to prove. 

 Hn

 In  Jn

 Kn  Mn

Fig. 3. 

Relation (3) – First, we will use Theorem 2 so that we choose the vertex v  of the graph nJ  as in 

Fig. 3. Then ( ) ( ) { }( )wvJZKZJZ nnn ,−+= . Now, with the respect of Theorem 3 by using the edge
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11vue=  we obtain { }( ) ( ) ( )2213, −− ∪+∪=− nnn HPZKPZwvJZ . Using Theorem 1 we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )23142213 −−−− ++=++= nnnnnnn HZFKZFKZHZPZKZPZKZJZ , which gives 

the proved relation.  
Relation (4) – Now, we will again use Theorem 2 two times (see Fig. 3). Thus   

( ) ( ) { }( ) ( ) ( ) ( ) ( ) { }( ) =−′+−′+=′+=−+−= −− 22211111 ,, wvKZvKZHZKZHZwvKZvKZKZ nnnnnnnn

( ) ( ) ( )111 −−− ++= nnn MZJZHZ . 

Relation (5) – Using Theorem 2 we first obtain 
( ) ( ) { }( ) ( ) ( )nnnnn MZHZwvMZvMZMZ ′+=−+−= −1111 , .  If we want to use Theorem 3 for the 

graph nM ′  it is suitable to choose the edge e as in Fig. 3. Then 

( ) ( ) ( ) { }( ) ( ) ( ) ( ) ( ) ( )21121221 −−−− ++=−′+−′+= nnnnnnn HZPZKZPZHZvuMZeMZHZMZ ,  and 

since ( ) 232 == FPZ , ( ) 121 == FPZ  the proof is over. 

 
It is easy to see that ( ) 2320 === FPZh  and therefore relations (1) and (2) are also valid for 1=n . 

 
 
3 Main results 
  
Theorem 5.  For the Hosoya index nk  of the graphs nK  the following linear difference equation 

                                            02196 1234 =+−−− ++++ nnnnn kkkkk                                                (7) 

holds for each positive integer n . 
 
Proof. First, we reduce the number of variables in the system relations from Lemma 1 for any 

2≥n  
                                       21 23 −− ++= nnnn hkkj                                                                             (3) 

                                        2111 2 −−−+ −−−−= nnnnnn hhhkkj                                                           (8) 

                                       211 222 −−− −−+−−= nnnnnn hhhkkj                                                         (9) 

when we obtain relation (8) from relations (4), (5) and relation (9) from relations (1), (2), (5). 
 
We can eliminate nj  by a suitable way and then we have two relations for the members of the 

sequences { }nh  and { }nk  

                                                      112 83134 −++ +=−− nnnnn hhkkk                                                 (10) 

                                          1123 82146 −+++ −=+−− nnnnnn hhkkkk                                                  (11) 

and the equality                        ( )nnnnn kkkkh 3116478
67

1
123 +−−= +++                                        (12) 

is directly obtained from the previous system. 
 
Finally, we substitute (12) into (10) and after simplification we obtain difference equation (7). 
 
Remark. It is known fact that each of the sequences from Lemma 1 satisfy the same linear 
difference equation as the sequence { }nk . Therefore the general solution for these sequences are the 

same, but the concrete function expression (particular solution) of the members of sequences will be 
different with respect to the various initial members of sequences. 

938



 
Theorem 6. The Hosoya index of the molecular graph nH of [ ]n helicene  can be written for any 

positive integer n in the form nnnn
n cccch δγβα 4321 +++= , where the constants 4321 ,,, cccc  can 

be uniquely expressed by the numbers δγβα ,,, . 
 
Proof. The members of the sequence { }nh  satisfy the homogeneous linear difference equation of the 

fourth order with constant coefficients  
02196 1234 =+−−− ++++ nnnnn hhhhh . 

Its characteristic equation is an algebraic equation of the fourth order 
012196 234 =+−−− xxxx  

with the different roots  δγβα ,,, . It means that nnnn
n cccch δγβα 4321 +++= and with help of 

the initial members 1233,148,18,2 3210 ==== hhhh  we obtain the following system of four 

linear equations for unknown  4321 ,,, cccc  

24321 =+++ cccc  

184321 =+++ δγβα cccc  

1482
4

2
3

2
2

2
1 =+++ δγβα cccc  

12333
4

3
3

3
2

3
1 =+++ δγβα cccc . 

 
It is easy to find the solution of this system in the symbolic form 
 

( ) ( )
( )( )( )δαγαβα

βγδγδβδβγδγβ
−−−

−+++++−= 2181481233
1c        

( ) ( )
( )( )( )δβγβαβ

αγδγδαδαγδγα
−−−

−+++++−= 2181481233
2c        

( ) ( )
( )( )( )δγβγαγ

αβδβδαδαβδβα
−−−

−+++++−= 2181481233
3c      

( ) ( )
( )( )( )γδβδαδ

αβγβγαγαβγβα
−−−

−+++++−
=

2181481233
4c  . 

 
Then the proof is finished. 
 
 
4 Numerical results 
 
We also had to calculate the previous results using Symbolic Math Toolbox of MATLAB. 
 
The roots of the characteristic equation 012196 234 =+−−− xxxx  can be found by MATLAB in 
the numerical form through the command 
 
>> syms x, R=solve(x^4-6*x^3-19*x^2-2*x+1) 

R = 

   8.3128260775610574875139058467921 

  0.17898242638989329333757646913108 
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 -0.3077323367373107047565344171426 

 -2.1840761672136400760949478987805 

 

The roots are four irrational numbers, which were denoted by δγβα ,,,  in Theorem 6. It is obvious 
that the above mentioned values are only approximations these numbers.  
 
The system of four linear equations for unknown  4321 ,,, cccc  was solved by using commands of 

MATLAB. Instead of the variables δγβα ,,,  are used in MATLAB the symbolic variables a, b, c, d 

and instead 4321 ,,, cccc  are used the identifiers C1, C2, C3, C4.   

 
>> syms a b c d , A = [1,1,1,1; a,b,c,d; a^2, b^2, c^2, d^2 ; a^3, b^3, c^3, d^3]; 

>> AC1=A; AC1(:,1)=[2; 18; 148; 1233]; C1=factor(det(AC1))/factor(det(A)) 

C1 = 

-(148*b + 148*c + 148*d - 18*b*c - 18*b*d - 18*c*d + 2*b*c*d - 1233)/((a - b)*(a - c)*(a - d)) 

>> AC2=A; AC2(:,2)=[2; 18; 148; 1233]; C2=factor(det(AC2))/factor(det(A)) 

C2 = 

(148*a + 148*c + 148*d - 18*a*c - 18*a*d - 18*c*d + 2*a*c*d - 1233)/((a - b)*(b - c)*(b - d)) 

>> AC3=A; AC3(:,3)=[2; 18; 148; 1233]; C3=factor(det(AC3))/factor(det(A)) 

C3 = 

-(148*a + 148*b + 148*d - 18*a*b - 18*a*d - 18*b*d + 2*a*b*d - 1233)/((a - c)*(b - c)*(c - d)) 

>> AC4=A; AC4(:,4)=[2; 18; 148; 1233]; C4=factor(det(AC4))/factor(det(A)) 

C4 = 

(148*a + 148*b + 148*c - 18*a*b - 18*a*c - 18*b*c + 2*a*b*c - 1233)/((a - d)*(b - d)*(c - d)) 

 
Calculation of approximations of the irrational constants 4321 ,,, cccc can be realized by command  

 
 >> c1=subs(C1,[a,b,c,d],R), c2=subs(C2,[a,b,c,d],R), c3=subs(C3,[a,b,c,d],R), c4=subs(C4,[a,b,c,d],R) 

c1 = 

2.1454822181534150647686192500525 

c2 = 

0.046858209049296998559385477378165 

c3 = 

-0.14042920424633548952728375521586 

c4 = 

-0.051911222956376573800720972214777  . 
 
The values of Hosoya index calculated by using MATLAB through the recurrence formula 

nnnnn hhhhh −++= ++++ 1234 2196  for the positive integers 201 ≤≤ n  are 

 
>> h=[sym(18) sym(148) sym(1233) sym(10244)]; 

>> for  n=1:16, h(n+4)= 6*h(n+3)+19*h(n+2)+2*h(n+1)-h(n); end, h 

h = 

[ 18, 148, 1233, 10244, 85169, 707968, 5885274, 48923130, 406689753, 3380740568, 

28103509701, 233619585374, 1942038987946, 16143832328616, 134200870403717, 
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1115588495056524, 9273693133679053, 77090598116627092, 640840734359373890, 

5327197568144459670] . 
 
The values of Hosoya index can also be calculated through the previously derived formula 

nnnn
n cccch δγβα 4321 +++=  for the positive integers 201 ≤≤ n . 

 
>> syms n, H=c1*R(1)^n+ c2*R(2)^n+ c3*R(3)^n+ c4*R(4)^n; 

>> for  k=1:20, h(k)=subs(H,n,sym(k)); end, h 

 h = 

 [ 18.0, 148.0, 1233.0, 10244.0, 85169.0, 707968.0, 5885274.0, 48923130.0, 406689753.0, 

3380740568.0, 28103509701.0, 233619585374.0, 1942038987946.0, 16143832328616.0, 

134200870403717.0, 1115588495056524.0, 9273693133679053.0, 77090598116627092.0, 

640840734359373890.0, 5327197568144459670.0] 

 
It is easy to see that both used methods of calculating of the Hosoya index of the graphs nH  for the 

positive integers 201 ≤≤ n  give identical results with respect to integers. The Hosoya index of 
[ ]n helicenes for 103 ≤≤ n  is presented in Tab. 2.  
 

n  3 4 5 6 7 8 9 10 
hn 1 233 10 244 85 169 707 968 5 885 274 48 923 130 406 689 753 3 380 740 568 

 
Tab. 2.  

 
 

5 Concluding remarks 
 

The Hosoya index of a graph, also known as Z-index, is one of the large family of topological 
indices of graphs which are closely connected with selected physico-chemical characteristics of the 
respective compounds. Similar connections are also known for the Merrifield-Simmons index of a 
graph, which is defined via the number of ways in which mutually independent vertices can be 
selected in a graph. The two indices do not only have very similar definitions, they are also quite 
related in another respect. Mostly it is true that the graph which minimizes the Merrifield-Simmons 
index is also the one which maximizes the Hosoya index, and vice versa. 
 
In the previous years we have calculated the Merrifield-Simmons index for special classes of 
hydrocarbons. In this contribution we have turned attention to the Hosoya index for one interesting 
class of molecular graphs. The methods of calculation are possible to use for other classes of the 
molecular graphs. The main problem is again in a rather complicated solution of system of 
difference equations which often leads only to numeric results. 
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