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Abstract. The present study aims to provide a better understanding of the fuzzy C-

means clustering, their technique and evaluating their results. In order to do so, the 

fuzzy C-means clustering technique was described in detail, then those technique was 

applicated on the data sets, as generated, as real. In doing so, novel insights into the 

key drivers  of fuzzy C-means clustering and evaluating of fuzzy clustering results. 

For determining the right number of clusters, were used indices based not only on 

membership function, but indices based on membership function and data sets. In 

most cases, those type of indices were able to recognize the right number of clusters. 

Indices involving the membership values and data sets were detected as more 

successful indices, although not always successful. 
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1 Possibilistic Fuzzy C-means Clustering 

Clustering is an unsupervised process and can be classified into two categories: hard and 

fuzzy clustering. Although those two different clustering categories, they have the common 

goal. The task of clustering is to divide the set in to the optimal number of groups. The objects 

in the same group (this group is called a cluster) must be more similar to each other than to 

those objects in other clusters. In this article will deal with the second category of clustering - 

fuzzy clustering.  

Fuzzy clustering is a form of clustering in which each  object can belong to more than one 

cluster. The main concept in fuzzy clustering is based on membership degrees. These 

membership grades indicate the degree to which data points belong to each cluster. A better 

reading of the memberships, avoiding misinterpretations, would be (Höppner, Klawonn, 

Kruse and Runkler, 1999): If the object xi has to be assigned to a cluster, then with the 

probability uij to the cluster j. However, the normalization of uij can lead to unexpected bad 
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result in finding and discovering outliners. The membership values affects the clustering 

results. 

 

By dropping the normalization constraint (1) in the following definition one tries to achieve a 

more intuitive assignment of degrees of membership and to avoid undesirable normalization 

effects (Oliveira, 2007). 

 

Let X = {x1; . . . ; xn} is a data set with k clusters, where number of clusters is 1 < k < n and 

represented by the fuzzy sets µCh. Hence, Up = (uij) = µCh(xi) is a possibilistic partition of X if: 
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holds. The degree of the object xi to cluster Ch is uij and achieves value [0, 1]. The 

membership degrees for one datum now resemble the possibility (in the sense of possibility 

theory (Dubois and Prade, 1988) of its being a member of the corresponding cluster (Daveґ 

and Krishnapuram,1997; Krishnapuram and Keller, 1992).Consequently, J would not be 

appropriate for this type of fuzzy clustering. The normalization term leads to following 

problem: J would reach its minimum for uij = 0 for all objects in data set, it means no one 

object is not assigned to cluster. Consequently, clusters are empty. According Krishnapuram 

and Keller (Krishnapuram and Keller, 1992) to avoid this problem the objective function must 

be modified to: 
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where i > 0 (i = 1; . . . ; k).  

 

The first part of this objective function leads to a minimization of the weighted distances. The 

second part puts down the first part of this function: when the first part leads to 1, the second 

part suppresses it: (1uij)
q
. In tandem with the first term the high membership can be 

expected especially for data that are close to their clusters, since with a high degree of 

belonging the weighted distance to a closer cluster is smaller than to clusters further away 

(Oliveira, 2007). The updating the membership degrees that is derived from J by setting its 

derivative to0 is (Krishnapuram and Keller, 1992): 
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Eq. 3.8 shows that the membership uij (belonging the object xito cluster Ch) depends on the 

distance from this object to cluster. Small value of the distance (strong similarity) leads to 

high membership degree, and the large value of distance means to low membership value. 

And the other one parameter is i  - the distance from object xj to the cluster Ch ,which 

membership degree should be 0,5. 

Since that value of membership can be seen as definite assignment to a cluster, the permitted 

extension of the cluster can be controlled with this parameter (Oliveira, 2007), but the 

parameter i  may have the different geometrical interpretation, this interpretation depends on 

the cluster shape. In case of the possibilistic k-means, the clusters diameter is i (Höppner, 

Klawonn, Kruse and Runkler 1999). If a kind of information about clusters is known a prior, 

i  can be set to any value. In case the same optionalities of all clusters this parameter can be 

the same for all clusters. But in the real world this information about cluster optionalities is 

unknown in advance. Hence, parameter i should be calculated. To calculate the optional 

value of i  can be used a probabilistic clustering model. The parameters i  are then estimated 

by the fuzzy intra-cluster distance using the fuzzy memberships matrix Uf as it has been 

determined by the probabilistic counterpart of the chosen possibilistic algorithm 

(Krishnapuram and Keller, 1992): 
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2   Validation indices 

 

The problem for finding an optimal number of clusters C* is usually called cluster validity 

problem. In order to solve the cluster validity problem, validity indices must enclose, take into 

account, some specific are as which enable to solve this problem successfully. Those areas 

are: compactness, separation, noise and overlap. A lot of validity indices for fuzzy clustering 

are. Early indices such as the partition coefficient and classification entropy make use only of 

membership values. The main advantage of those indices they are easy to compute. Now, it is 

widely accepted that a better definition of a validity index always consider both partition 

matrix U and the data set itself. In this paper we will go with the classification of indices by 

Wang (Wang, 2007). The first group of those indices is indices involving only the 

membership values. 
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Partition coefficient (PC). PC index is based on minimizing the overall content of pair wise 

fuzzy intersection in U, the partition matrix. The index was defined as 
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Those index indicates the average relative amount of membership sharing done between pairs 

of fuzzy subsets in U, by combining into a single number, the average contents of pairs of 

fuzzy algebraic products. In general, we find an optimal cluster number C* by solving 

PC
nC 1 - 2

max


 to produce the best clustering performance for the data set X.¨ 

 

Modified PC (PCmod) index (Dave, 1992) as a modification of the previous one and can take 

values 0,1: 
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The optimal number of cluster C* is defined by solving of: 
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When the variability in clusters is small, this modified Dunn’s coefficient PCmod usually 

determined the number of clusters correctly (Řezanková, Húsek, 2012).When the cluster 

variability is greater, the normalized Dunn’s coefficient usually achieved its highest value for 

the highest possible number of clusters. (Řezanková, Húsek, 2012) Validity indices involving 

the membership values and the data set are more successful compared with validity indices 

involving the only membership values. (Wang, 2007). The most succesfull index from those 

group is Xie and Beni (XB) validity index. XB index was proposed in by Xie and Beni (Xie, 

Beni, 1991) with q = 2 and modified by Pal and Bezdek (Pal, Bezdek, 1995) was defined as: 
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XB includes two components: compactness in the numerator and separation, which is 

represented in denominator. The optimal number of clusters C* can be find by solving 

XBnC 12min   to produce the best clustering performance for the data set X. XB  index has 

tendency to monotonically decrease with increasing number of clusters.  

 

 

3   Case Study 

 

The main objective of third section is to compare the performance of those indices in 

evaluating the optimal number of clusters. In the following experiments presented here, were 

tested the cluster validity indices for 5 well-known data set from UCI Machine Learning 

Repository and for 5 generated data sets. 

The data set Abalone: 

This data set comes from an original, non-machine study. Those data was made in 1994 by 

Warwick J Nash and collective. Data set Abalone contains 8 variables: 

1. length (continuous in mm) Longest shell measurement, 

2. diameter (continuous in mm) perpendicular to length, 

3. height (continuous in mm) with meat in shell, 

4. whole weight (continuous in grams) whole abalone, 

5. shucked weight (continuous  in grams) weight of meat, 

6. viscera weight (continuous in grams) gut weight (after bleeding), 

7. shell weight (continuous in grams) after being dried, 

8. rings (integer) +1.5 gives the age in years. 

Total number of samples is 4177. Abalone data set contains two clusters. Data set samples are 

highly overlapped and none correlated.  

 

The data set Breast Tissue: 

This database includes 106 instances. Six classes of freshly excised tissue were studied using 

electrical impedance measurements:  

1. carcinoma, 

2. fibro-adenoma, 

3. mastopathy, 

4. glandular, 

5. connective, 

6. adipose. 

The data set can be used for predicting the classification of either the original 6 classes or of 4 

classes by merging together the fibro-adenoma, mastopathy and glandular classes whose 

discrimination is not important (they cannot be accurately discriminated anyway). All those 

data were divided into 6 groups with help of 9 variables: 

1. impedivity (ohm) at zero frequency, 

2. phase angle at 500 khz, 

3. high-frequency slope of phase angle, 

912



4. impedance distance between spectral ends, 

5. area under spectrum, 

6. area normalized, 

7. maximum of the spectrum, 

8. distance between impedivity  and real part of the maximum frequency object, 

9. length of the spectral curve. 

 

The data set Cardiography: 

The represented data set obtains 2126 samples and 21 variables, which are divided on 3 

clusters by fetal state class code: normal, suspect and pathologic. Data set samples are 

middling overlapped and none correlated.  

 

The data set Connectionist Bench: 

For this data set 15 people were gradually microphones into 6 series, where each series has 11 

vowels pronounced. The data file contains of 990 subjects (voiced vowels), where for each 

vowel recorded 10 characteristics. Because the multicollinearity is not present in the data file, 

all of the variables will be enter into the analysis. 

 

The data set Wholesale customers 

Current data set contains 440 objects, divined into 2 clusters by following attributes: 

1. fresh: annual spending (m.u.) on fresh products, 

2. milk: annual spending (m.u.) on milk products, 

3. grocery: annual spending (m.u.)on grocery products, 

4. frozen: annual spending (m.u.)on frozen products, 

5. detergents paper: annual spending (m.u.) on detergents and paper products, 

6. delicatessen: annual spending (m.u.)on and delicatessen products (continuous).  

 

3.2 Generated Data Sets 

 

The data set with 8 clusters (Example_2): 

Data set contains 320 objects, which were put in 8 clusters. The number of variables is 8.All data 

sets have the normal distribution. 

The data set Example_2, obtains overlapped clusters. 

 

The data set with 9 clusters (Example_7): 

Current data set contains 360 objects, which were put in 9 clusters. The number of variables is 

8. Data set have the normal distribution. The data set Example_7 obtains middling - 

overlapped clusters. 

 

The data set with 10 clusters (Example_11): 

The data set contains 400 objects, which were put in 10 clusters. The number of variables is 8 

with normal distribution. The data set Example_11obtain middling - overlapped clusters. 
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The data set with 11 clusters (Example_19): 

The data set contains 440 objects, which were put in 9 clusters. The number of variables is 8 

with normal distribution. The data set Example_19 obtain middling - overlapped clusters. 

 

The data set with 12 clusters (Example_25): 

The data set contains 480 objects, which were put in 9 clusters. The number of variables is 8 

with normal distribution. The data set Example_25 obtain middling - overlapped clusters. 

 

 

    

Fig. 1. The data set 

Abalone. 

Fig. 2. The data set 

Breast Tissue. 

Fig. 3. The data set 

Cardiography. 

Fig. 4. The data set 

Connectionist Bench 

(Vowel Recognition − 

Deterring Data). 

 
   

Fig. 5. The data set 

Wholesale 

customers. 

Fig. 6. Example_2: 

The data set with 8 

clusters (obtaining 

320 objects); 

overlapped clusters 

with normal 

distribution. 

Fig. 7. Example_7: 

The data set with 9 

clusters (obtaining 

360 

objects);middling - 

overlapped clusters 

with normal 

distribution. 

Fig. 8. Example_11: 

The data set with 10 

clusters (obtaining 400 

objects) middling - 

overlapped clusters 

with normal 

distribution. 

  
Fig. 9. Example_19: 

The data set with 11 clusters (obtaining 440 

objects) middling - overlapped clusters with 

normal distribution. 

Fig. 10.: Example_25: 

The data set with 12 clusters ; (obtaining 480 

objects); middling - overlapped clusters with 

normal distribution. 
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4 Results and Discussion  

 

The result of evaluating fuzzy C-means clustering results are shown in Tab. 1. and 2. In Tab. 

1. are shown the number of clusters, which are calculated for PC, PCmod, and XB index for 

real data sets.  
Data set C* PC PCmod XB 

Abalone 2 2 2 2 

Breast Tissue 6 2 2 2 

Cardiotocography 3 2 2 3 

Connectionist Bench 

(Vowel Recognition 

- Deterring Data) 

11 3 2 8 

Wholesale customers 2 2 3 2 

Successfulness,% - 40% 20% 60% 

Tab. 1. Values of C by validity indices for real data sets. 

 

Summing up, we can determine in which of the abovementioned cases the indices worked 

incorrectly, in other words, to find out what affected it. 

 

To sum up, the most successful indexes are XB with success rates of 60%.The worst-

performing index is PCmod with a success rate of 20%. However the PC index was better with 

a success rate of 40%. In Table 2 are shown the number of clusters, which are calculated for 

PC, PCmod, and XB index for generated data sets. 

 
Data set C* PC PCmod XB 

Example_2 8 3 8 8 

Example_7 9 2 2 9 

Example_11 10 2 2 2 

Example_19 11 4 4 11 

Example_25 12 2 6 12 

Successfulness, % - 0% 20% 60% 

 

Tab. 2. Values of C by validity indices for generated data sets. 

 

The number of clusters ranged from 8 to 12. As Bezdek (Bezdek, 1987) pointed out: the 

number of variables does not affect the fuzzy C-means clustering results. For this reason, the 

same number of variables was chosen for all generated data sets – eight. However, the degree 

of overlapping is different for each data set as shown in Fig 1 – 10. Fuzzy C-means clustering 

with Euclidean distance was applied to each data set. To sum up, the most successful indexes 
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are XB with success rates of 60%.The worst-performing index is PC with a success rate of 

0%. However the modified PC index was better with a success rate of 20%. 

 

The validation of clustering structures is the most difficult and frustrating part of cluster 

analysis. That’s why the issue of the definition of the indexes, which would be good for data 

with large variability and a large number of clusters, has not yet been resolved. As shown by 

the results of the approach, which we suggest, this modification can increase the efficiency of 

the correct determination of the number of clusters.  

 

From the experiment's results, it can be drawn that the modification method determines the 

number of clusters correctly. The next part of current study is represented in following 

subchapter. 

Study the data can help to define what behavior we can expect from the clusters with different 

overlap but with normal distribution. Let’s observe how the behavior of those indices changes 

with an increasing number of clusters. 
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