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1 Introduction
The ability to find a numerical approximation of solution of a differential equation is important in
particular practical applications where it is difficult or even impossible to find analytical solution of
the given problem. Plenty of well-established and verified numerical methods for various kinds of
problems involving differential equations can be found for instance in monographs [1], [2], [5], [6].

Among others, semi-analytical methods convenient for solving differential equations are in the fore-
front of study in the last two decades. However, the calculations and results are often expressed in a
complicated way. We propose an easily applicable approach in this paper.

The differential transformation is closely related to Taylor expansion of real analytic functions with
applications to different types of problems of solving differential equations. To indicate recent de-
velopment in the field we mention several papers from the last three years, e.g. [9], [10], [11], [12],
[15].

The paper is organized as follows. First we recall basic definitions and formulas of the differential
transformation and give a brief overview of Bell polynomials and the Faà di Bruno’s formula in
Section 2. In Section 3 we develop the theory and prove the main result. Application of the results is
shown in Section 4.

Convergence, error estimates and stability of Taylor series based methods is thoroughly discussed
in literature on numerical methods, therefore we do not include such topics in the paper. However,
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interesting results on a-priori error bounds are published in recent paper [14] and the references cited
therein.

2 Preliminaries
In this section we recall basic definitions and formulas of the differential transformation as well as
notions and results related to partial Bell polynomials.

Definition 1 The differential transformation of a real function u(t) at a point t0 ∈ R is D{u(t)}[t0] =
{U(k)[t0]}∞k=0, where U(k)[t0], the differential transformation of the k−th derivative of the function
u(t) at t0, is defined as

U(k)[t0] =
1

k!

[
dku(t)

dtk

]
t=t0

, (1)

provided that the original function u(t) is analytic in some neighbourhood of t0.

Definition 2 The inverse differential transformation of {U(k)[t0]}∞k=0 at t0 is defined as

u(t) = D−1
{
{U(k)[t0]}∞k=0

}
[t0] =

∞∑
k=0

U(k)[t0](t− t0)k. (2)

In real applications the function u(t) is expressed by a finite sum

u(t) =
N∑
k=0

U(k)[t0](t− t0)k. (3)

Plenty of transformation formulas can be derived from Definitions 1 and 2. We recall the following
relations which will be used later in illustratory examples.

Lemma 1 Assume that {F (k)}∞k=0, {G(k)}∞k=0, {H(k)}∞k=0 and {Ui(k)}∞k=0, i = 1, . . . ,m, are dif-
ferential transformations of analytic functions f(t), g(t), h(t) and ui(t), i = 1, . . . ,m, at t0 ∈ R,
respectively. Let n ∈ N and λ ∈ R. Then

i) If f(t) =
dng(t)

dtn
, then F (k) =

(k + n)!

k!
G(k + n).

ii) If f(t) = g(t) h(t), then F (k) =
k∑
l=0

G(l) H(k − l).

iii) If f(t) = tn, then F (k) = δ(k − n), t0 = 0, where δ is the Kronecker

delta symbol.

iv) If f(t) = eλt, then F (k) =
eaλ λk

k!
, t0 = a.

v) If f(t) = ln t, then F (0) = 0 and F (k) =
(−1)k+1

k
for k ≥ 1, t0 = 1.

vi) If f(t) = (1 + t)λ, then F (k) =

(
λ

k

)
=
λ(λ− 1) . . . (λ− k + 1)

k!
, t0 = 0.

vii) If f(t) =
m∏
i=1

ui(t), then

F (k) =
k∑

s1=0

k−s1∑
s2=0

. . .

k−s1−...−sm−2∑
sm−1=0

U1(s1) . . . Um−1(sm−1) Um(k − s1 − . . .− sm−1).
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The main disadvantage of most papers with applications of the differential transformation is that there
is lack of direct applications on equations with nonlinear terms containing unknown function u(t),
e.g. f(u) =

√
1 + u2 or f(u) = esinu. Usually, the "nonlinearity" is represented by terms un, n ∈ N,

and formula vii) in Lemma 2 is used to transform such terms.

In paper [13] the differential transformation of components containing nonlinear terms is calculated
using the so-called Adomian polynomials An in which each solution component ui is replaced by
the corresponding differential transformation component U(i), i = 0, 1, 2, . . . . The formula for the
differential transformation F (k) of a nonlinear term f(u) is

F (k) =
∞∑
n=0

An(U(0), U(1), . . . , U(n))δ(k − n) = Ak(U(0), U(1), . . . , U(k))

=
1

k!

dk

dtk

[
f

(
∞∑
i=0

U(i)ti

)]
t=0

, k ≥ 0.

The first four terms are:

F (0) = f(U(0)),

F (1) = U(1)f ′(U(0)),

F (2) = U(2)f ′(U(0)) +
1

2!
U2(1)f ′′(U(0))

F (3) = U(3)f ′(U(0)) + U(1)U(2)f ′′(U(0)) +
1

3!
U3(1)f ′′′(U(0)).

As we can observe, the formula with the so-called Adomian polynomials is in fact the well-known Faà
di Bruno’s formula generalizing the chain rule to higher derivatives. However, there are derivatives
of the function f contained in the formula, which means that symbolic derivatives of f need to
be calculated and then evaluated. In such situation, one of the big advantages of the differential
transformation is lost.

Fortunately, the differential transformation of components containing nonlinear terms can be easily
found without calculating and evaluating symbolic derivatives. We will utilize a slightly modified Faà
di Bruno’s formula with not exponential but ordinary Bell polynomials.

For this purpose we recall some necessary notions and results in combinatorics. The proofs are
omitted since they can be found in the cited literature [3] and [4].

Definition 3[[4], p. 133] The partial exponential Bell polynomials are the polynomials
Bk,l(x1, . . . , xk−l+1) in an infinite number of variables x1, x2, . . ., defined by the series expansion

∑
k≥l

Bk,l(x1, . . . , xk−l+1)
tk

k!
=

1

l!

(∑
m≥1

xm
tm

m!

)l

, l = 0, 1, 2, . . . (4)

Lemma 2[[4], p. 134] The partial exponential Bell poynomials have integer coefficients, are homo-
geneous of degree l and weight k, and their exact expression is:

Bk,l(x1, . . . , xk−l+1) =
∑ k!

j1!j2! · · · jk−l+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xk−l+1

(k − l + 1)!

)jk−l+1

, (5)
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where the summation takes place over all sequences j1, j2, . . . , jk−l+1 of non-negative integers such
that

j1 + j2 + . . .+ jk−l+1 = l, (6)
j1 + 2j2 + . . .+ (k − l + 1)jk−l+1 = k. (7)

Lemma 3[[3], p. 415] The partial exponential Bell polynomials Bk,l(x1, . . . , xk−l+1),
l = 1, 2, . . ., k ≥ l, satisfy the recurrence relation

Bk,l(x1, . . . , xk−l+1) =
k−l+1∑
i=1

(
k − 1

i− 1

)
xiBk−i,l−1(x1, . . . , xk−i−l+2), (8)

where B0,0 = 1 and Bk,0 = 0 for k ≥ 1.

Theorem 1[[4], p. 138-139] Let two functions f(y) and g(x) of a real variable be given, g(x) of class
C∞ at x = t0, and f(y) of classC∞ at y = s0 = g(t0), and let h(x) = (f ◦g)(x) = f(g(x)). If we put

g0 = g(t0), f0 = f(s0) = h0 = h(t0) = f(g(t0)), gm =
dmg

dxm

∣∣∣∣
x=t0

, fl =
dlf

dyl

∣∣∣∣
y=s0

, hk =
dkh

dxk

∣∣∣∣
x=t0

,

then the k-th order derivative of h at t = t0 for k ≥ 1 equals

hk =
dkh

dxk

∣∣∣∣
x=t0

=
k∑
l=1

flBk,l(g1, g2, . . . , gk−l+1), (9)

where Bk,l are explicitly given by (5).

Definition 4[[4], p. 136] The partial ordinary Bell polynomials are the polynomials
B̂k,l(x̂1, . . . , x̂k−l+1) in an infinite number of variables x̂1, x̂2, . . ., defined by the series expansion

∑
k≥l

B̂k,l(x̂1, . . . , x̂k−l+1)t
k =

(∑
m≥1

x̂mt
m

)l

, l = 0, 1, 2, . . . (10)

3 Results
Before we formulate the main theorem, we prove several auxiliary results. The following lemma is
crucial in the proof of the main result.

Lemma 4 The relation between the partial exponential Bell polynomials Bk,l and the partial ordinary
Bell polynomials B̂k,l is

Bk,l(x1, . . . , xk−l+1) =
k!

l!
B̂k,l

(
x1
1!
,
x2
2!
, . . . ,

xk−l+1

(k − l + 1)!

)
. (11)

Proof. If we denote x̂i =
xi
i!

for all i = 0, 1, 2, . . ., and substitute in (10), we obtain

∑
k≥l

B̂k,l

(
x1
1!
,
x2
2!
, . . . ,

xk−l+1

(k − l + 1)!

)
tk =

(∑
m≥1

xmt
m

m!

)l

, l = 0, 1, 2, . . . (12)
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Multiplying both sides by
1

l!
and each summand on the left side by

k!

k!
, we get

∑
k≥l

k!

l!
B̂k,l

(
x1
1!
,
x2
2!
, . . . ,

xk−l+1

(k − l + 1)!

)
tk

k!
=

1

l!

(∑
m≥1

xm
tm

m!

)l

, l = 0, 1, 2, . . . (13)

Equating the coefficients of tk in (13) and (4) we get the formula (11).

In calculation of the partial ordinary Bell polynomials, the following lemma can be useful.

Lemma 5 The partial ordinary Bell polynomials B̂k,l(x̂1, . . . , x̂k−l+1), l = 1, 2, . . ., k ≥ l, satisfy the
recurrence relation

B̂k,l(x̂1, . . . , x̂k−l+1) =
k−l+1∑
i=1

i · l
k
x̂iB̂k−i,l−1(x̂1, . . . , x̂k−i−l+2), (14)

where B̂0,0 = 1 and B̂k,0 = 0 for k ≥ 1.

Proof. Using the relation between the exponential and ordinary Bell polynomials (11), the formula
(8) changes to

k!

l!
B̂k,l

(
x1
1!
, . . . ,

xk−l+1

(k − l + 1)!

)
=

k−l+1∑
i=1

(
k − 1

i− 1

)
xi
(k − i)!
(l − 1)!

B̂k−i,l−1

(
x1
1!
, . . . ,

xk−i−l+2

(k − i− l + 2)!

)
.

After rearranging the expression and multiplying ith term in the sum by
i!

i!
, we obtain

B̂k,l

(
x1
1!
, . . .,

xk−l+1

(k − l + 1)!

)
=

=
k−l+1∑
i=1

(k − 1)!

(i− 1)!(k − i)!
l!

k!

(k − i)!
(l − 1)!

i!
xi
i!
B̂k−i,l−1

(
x1
1!
, . . . ,

xk−i−l+2

(k − i− l + 2)!

)
.

Now we cancel all possible factors and factorials and we get

B̂k,l

(
x1
1!
, . . . ,

xk−l+1

(k − l + 1)!

)
=

k−l+1∑
i=1

i · l
k

xi
i!
B̂k−i,l−1

(
x1
1!
, . . . ,

xk−i−l+2

(k − i− l + 2)!

)
. (15)

Denoting x̂i =
xi
i!

for all i = 1, . . . , k − l + 1, gives the formula (14).

The main result of the paper is formulated in the following theorem:

Theorem 2 Let g and f be real functions analytic near t0 and g(t0) respectively, and let h be the
composition h(t) = (f ◦ g)(t) = f(g(t)). Denote D{g(t)}[t0] = {G(k)}∞k=0, D{f(t)}[g(t0)] =
{F (k)}∞k=0 and D{(f ◦ g)(t)}[t0] = {H(k)}∞k=0 the differential transformations of functions g, f and
h at t0, g(t0) and t0 respectively. Then the numbers H(k) in the sequence {H(k)}∞k=0 satisfy the
relations H(0) = F (0) and

H(k) =
k∑
l=1

F (l) · B̂k,l

(
G(1), . . . , G(k − l + 1)

)
for k ≥ 1. (16)
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Proof. The assumption of analyticity of functions g, f and h guarantees that Theorem 1 is valid.

Applying Definition 1 on formula (9), we obtain

k!H(k) =
k

∑

l=1

l!F (l) · Bk,l

(

1!G(1), . . . , (k − l + 1)!G(k − l + 1)
)

. (17)

If we divide both sides by k! and apply formula (11) in Lemma 3, we have

H(k) =
k

∑

l=1

l!

k!
F (l) ·

k!

l!
B̂k,l

(

1!G(1)

1!
, . . . ,

(k − l + 1)!G(k − l + 1)

(k − l + 1)!

)

(18)

for k ≥ 1. Cancelling all possible factorials gives the result.

4 Applications

To show efficiency of the derived algorithm, we apply the differential transformation to two differen-

tial equations nonlinear with respect to the dependent variable u(t).

Example 1 Let us consider equation

u′(t) = u(t)− t+ ln(u(t)) (19)

with initial condition

u(0) = 1. (20)

Here we denote h(t) = f(g(t)), where g(t) = u(t) and f(x) = ln(x). We are looking for an analytic

solution in a neighbourhood of t0 = 0. Then the righthand side of (19) is analytic too. The differential

transformation turns the equation (19) into

(k + 1)U(k + 1)[0] = U(k)[0]− δ(k − 1) +H(k)[0], (21)

with transformed initial condition U(0)[0] = 1.

To find the coefficients H(k)[0], we use Theorem 2. First of all, we recall Lemma 2, formula v),
to see that the differential transformation of f(x) = ln(x) at x0 = u(0) = 1 is F (0)[1] = 0 and

F (k)[1] =
(−1)k+1

k
for k ≥ 1. Theorem 2 gives H(0)[0] = F (0)[1] = 0 and

H(k)[0] =
k

∑

l=1

F (l)[1] · B̂k,l

(

U(1)[0], . . . , U(k − l + 1)[0]
)

for k ≥ 1. We calculate

H(1)[0] = F (1)[1] · B̂1,1

(

U(1)[0]
)

= U(1)[0],

H(2)[0] =
2

∑

l=1

F (l)[1] · B̂2,l

(

U(1)[0], U(2)[0]
)

= F (1)[1]B̂2,1

(

U(1)[0], U(2)[0]
)

+

+ F (2)[1]B̂2,2

(

U(1)[0]
)

= U(2)[0] +
(−1)

2

(

U(1)[0]
)2

= U(2)[0]−
1

2

(

U(1)[0]
)2
,

H(3)[0] =
3

∑

l=1

F (l)[1] · B̂3,l

(

U(1)[0], U(2)[0], U(3)[0]
)

= F (1)[1]B̂3,1

(

U(1)[0], U(2)[0], U(3)[0]
)

+ F (2)[1]B̂3,2

(

U(1)[0], U(2)[0]
)

+

+ F (3)[1]B̂3,3

(

U(1)[0]
)

= U(3)[0]−
1

2
2U(1)[0]U(2)[0] +

1

3

(

U(1)[0]
)3
.
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Now we are prepared to calculate the coefficients U(k)[0], k = 1, 2, . . ..

U(1)[0] = U(0)[0]− δ(−1) +H(0)[0] = 1,

U(2)[0] =
1

2
=
(
U(1)[0]− δ(0) +H(1)[0]

)
=

1

2
(1− 1 + 1) =

1

2
,

U(3)[0] =
1

3

(
U(2)[0]− δ(1) +H(2)[0]

)
=
1

3

(
1

2
+ U(2)[0]− 1

2

(
U(1)[0]

)2)
=

1

3 · 2
=

1

3!
,

U(4)[0] =
1

4

(
U(3)[0]− δ(2) +H(3)[0]

)
=

1

4

(
1

3!
+ U(3)[0]− 1

2
2U(1)[0]U(2)[0]+

+
1

3

(
U(1)[0]

)3)
= . . . =

1

4!
,

...

It is not difficult to verify that the kth coefficient U(k)[0] has the value
1

k!
. Using the inverse differ-

ential transformation (Definition 2) we obtain

u(t) = D−1
{
{U(k)[0]}∞k=0

}
[0] =

∞∑
k=0

1

k!
tk = et, (22)

which is the exact solution of the initial value problem (19), (20).

Example 2 Let us solve the following equation

u′(t) = 2
√

1− u2(t) (23)

with initial condition

u(0) = 0. (24)

We denote h(t) = f(g(t)), where g(t) = u(t) and f(x) =
√
1− x2. We want to find an analytic

solution in a neighbourhood of t0 = 0. The righthand side of (23) is analytic near t0. The differential
transformation of the equation (23) is

(k + 1)U(k + 1)[0] = 2H(k)[0], (25)

with transformed initial condition U(0)[0] = 0.

We use Theorem 2 to find the coefficientsH(k)[0]. First of all, we use Lemma 2, formula vi) to derive
the differential transformation of f(x) at x0 = u(0) = 0. Since f(x) =

√
1− x2 = (1 + (−x2))

1
2 ,

Taylor series of f(x) at 0 is f(x) =
∞∑
k=0

(
1
2

k

)
(−x2)k. Consequently, F (2k)[0] =

(
1
2

k

)
(−1)k and

F (2k + 1)[0] = 0 for k ∈ N0. Theorem 2 gives H(0)[0] = F (0)[0] = 1 and

H(k)[0] =
k∑
l=1

F (l)[0] · B̂k,l

(
U(1)[0], . . . , U(k − l + 1)[0]

)
for k ≥ 1. (26)
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Now we take (25) and (26) in turns to obtain the coefficients.

U(1)[0] =
2

1
H(0)[0] = 2,

H(1)[0] = F (1)[0] · B̂1,1

(
U(1)[0]

)
= 0 · U(1)[0] = 0,

U(2)[0] =
2

2
H(1)[0] = 0,

H(2)[0] =
2∑
l=1

F (l)[0] · B̂2,l

(
U(1)[0], U(2)[0]

)
= F (1)[0]B̂2,1

(
U(1)[0], U(2)[0]

)
+

+ F (2)[0]B̂2,2

(
U(1)[0]

)
= 0 · U(2)[0] + 1

2
(−1)

(
U(1)[0]

)2
= −1

2
22,

U(3)[0] =
2

3
H(2)[0] =

2

3

(
−1

2

)
22 = −23

3!
,

H(3)[0] =
3∑
l=1

F (l)[0] · B̂3,l

(
U(1)[0], U(2)[0], U(3)[0]

)
= F (1)[0]B̂3,1

(
U(1)[0], U(2)[0], U(3)[0]

)
+ F (2)[0]B̂3,2

(
U(1)[0], U(2)[0]

)
+

+ F (3)[0]B̂3,3

(
U(1)[0]

)
= 0− 1

2
2U(1)[0]U(2)[0] + 0 = 0,

U(4)[0] =
2

4
H(3)[0] = 0,

H(4)[0] =
4∑
l=1

F (l)[0] · B̂4,l

(
U(1)[0], U(2)[0], U(3)[0], U(4)[0]

)
= F (1)[0]B̂4,1

(
U(1)[0], U(2)[0], U(3)[0], U(4)[0]

)
+

+ F (2)[0]B̂4,2

(
U(1)[0], U(2)[0], U(3)[0]

)
+ F (3)[0]B̂4,3

(
U(1)[0], U(2)[0]

)
+

+ F (4)[0]B̂4,4

(
U(1)[0]

)
= 0− 1

2

(
2U(1)[0]U(3)[0] + (U(2)[0])2

)
+ 0 +

(
1
2

2

)(
U(1)[0]

)4
= −1

2

(
2 · 2 · −2

3

3!
+ 0
)
+

1

2
·
(
−1

2

)
· 1
2!
· 24 = 24

6
− 24

8
=

24

24
=

24

4!
,

U(5)[0] =
2

5
H(4)[0] =

2

5
· 2

4

4!
=

25

5!
,

...

Also in this case, it is possible to see the pattern for the kth coefficient U(k)[0], which is U(k)[0] = 0

if k is even and U(k)[0] = (−1)
k−1
2
2k

k!
if k is odd. The inverse differential transform gives

u(t)=D−1
{
{U(k)[0]}∞k=0

}
[0]=

∞∑
k=0

(−1)k · 22k+1

(2k + 1)!
t2k+1=

∞∑
k=0

(−1)k

(2k + 1)!
(2t)2k+1=sin 2t.

Indeed, u(t) = sin 2t is the exact unique solution of the given initial value problem (23), (24).

Remark In recent works [7], [8], a more general discretization technique involving Hilbert spaces is
introduced. Although the approach is different, the transformation rules are identical to the differential
transformation formulas.
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We can summarize the main advantages of the presented approach as follows:

• Using the presented algorithm, we are able to obtain approximate solution of the initial value
problem. However, in some cases, there is the possibility to identify the unique solution in
closed form.

• We do not need initial guess approximation and symbolic computation of multiple integrals or
derivatives, hence less calculations are demanded compared to other popular semi-analytical
methods (the variational iteration method, the homotopy perturbation method, the homotopy
analysis method, the Adomian decomposition method).

• There is no need for numerical integration or differentiation either. Only arithmetical operations
are used.

• In comparison to any purely numerical method, a specific advantage of this technique is that
the approximate solution is always a function analytic near t0.

• The algorithm is recurrent, so we use values computed in previous steps. Suitable arrange-
ments can be made to reduce the necessary computational work. This fact was demonstrated in
Example 2.

5 Conclusion
Results of this paper are based on combinatorial properties of Bell polynomials applied in the dif-
ferential transformation theory. Modified version of the Faà di Bruno’s formula with partial ordinary
Bell polynomials was proved. Applicability of the algorithm was demonstrated on two particular
examples of the initial value problem for differential equations with nonlinearity containing the un-
known function. The algorithm can be generalized to other types of problems, e.g. boundary value
problems.
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