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Abstract. We investigate a system of the four nonlinear difference equations, where the first 
equation obtain a neutral term. We state sufficient conditions for system to have the weak 
property B and property B.
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1 Introduction
In this paper, we study asymptotic behavior of solutions of a four-dimensional system

∆ (xn + pnxn−σ) = An f1 (yn)

∆yn = Bn f2 (zn)

∆zn = An f3 (wn)

∆wn = Dn f4 (xγn) ,

(S)

where n ∈ N0 = {n0, n0 + 1, ...}, n0 is a positive integer, σ is a nonnegative integer, {An} , {Bn} , {Dn}
are positive real sequences defined for n ∈ N0. ∆ is the forward difference operator given by
∆xn = xn+1 − xn.

The sequence γ : N→ N satisfies
γn ≥ n+ σ. (H1)

The most common form of this sequence is γn = n± τ, where τ ∈ N.

The sequence {pn} is a sequence of the real numbers and it satisfies

lim
n→∞

pn = P , where |P | < 1. (H2)

Functions fi : R→ R for i = 1, .., 4 satisfy

fi(u)

u
≥ 1, u ∈ R\0. (H3)
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Nonlinear difference systems or difference equations are often studied when
∞∑

n=n0

An =∞,
∞∑

n=n0

Bn =∞, (H4)

which is called that the system (S) is in the canonical form. In this paper, we study the system under
the following conditions

∞∑
n=n0

An =∞,
∞∑

n=n0

Bn <∞,
∞∑

n=n0

Bn

(
n−1∑
i=n0

Ai

)
=∞. (H5)

By a solution of the system (S) we mean a vector sequence (x, y, z, w) which satisfies the system (S)
for n ∈ N0. We investigate oscillatory or nonoscillatory solutions.

Definition 1. The component x is said to be nonoscillatory if there exists n1 ≥ n0 such that xn ≥ 0
(respectively xn ≤ 0) for all n ≥ n1. A solution of (S) is said to be nonoscillatory if all of its
components x, y, z, w are nonoscillatory.

Definition 2. The component x is said to be oscillatory if for any n1 ≥ n0 there exists n ≥ n1 such
that xn+1xn < 0. A solution of (S) is said to be oscillatory if all of its components x, y, z, w are
oscillatory.

We study when (S) has a Property B or Weak property B. Property B is defined in accordance with
those for the higher-order differential equations or for the system of differential equations, see [9] and
references therein.

Definition 3. The system (S) has weak property B if every nonoscillatory solution of (S) satisfies

xnzn > 0 and ynwn > 0 for large n. (1)

Definition 4. The system (S) has property B if any of its solutions either is oscillatory or satisfies
either

lim
n→∞

|xn| = lim
n→∞

|yn| = lim
n→∞

|zn| = lim
n→∞

|wn| =∞, (2)

or
lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = lim
n→∞

wn = 0. (3)

Solutions satisfying (1) and xnyn > 0 are called strongly monotone solutions, while solutions satis-
fying (1) and xnyn < 0 are called Kneser solutions.

The system (S) can be easily rewritten as a fourth-order nonlinear neutral difference equation. Equa-
tions with quasi-differences have been widely studied in the literature; see, for example, [1]–[7],
[10]. Equations of this form appear in the discretization process for solving models concerning phys-
ical, biological, and chemical henomena, such as, for instance, problems of elasticity, deformation of
structures, or soil settlement.

The aim of this paper is to extend our results about asymptotic behavior of nonoscillatory solutions of
(S). We try to extend our results from [8]. We give sufficient conditions that (S) has weak property B
and property B for the system (S) with the different assumptions then in previous. In [8], we establish
sufficient conditions for the system (S) to have weak property B and we suppose that (S) is in the
canonical form with positive sequence {pn}. In this paper, we have the symetric operator of (S) and
we modify the conditions (H4) into (H5) and sequence γn in order to have more general conditions.
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2 Types of nonoscillatory solutions

If the system (S) has a solution (x, y, z, w), then it has the solution (−x,−y,−z,−w) as well. Thus,
throughout the paper, we can focus on solutions whose first component is eventually positive for large
n.

We use the notation
sn = xn + pnxn−σ, (4)

where n ∈ N0.

In proofs of our theorems we use the following lemma, which was proved in [8] for p positive, but it
is easy to see that it holds for (H2) as well.

Lemma 1. [8, Lemma 1] Let {xn} be eventually positive sequence and {pn} satisfies (H2), n ∈ N0.
Let {sn} be the sequence defined by (4). Then {xn} is bounded if and only if {sn} is bounded.
Moreover, if {sn} is positive and increasing for large n, then

xn ≥ sn−σ(1− pn) for large n. (5)

The following lemma describes the possible types of nonoscillatory solutions.

Lemma 2. Assume (H4). Then any nonoscillatory solution (x, y, z, w) of (S) with eventually positive
x is one of the following types:
type (a) xn > 0 yn > 0 zn > 0 wn > 0 for large n,
type (b) xn > 0 yn > 0 zn > 0 wn < 0 for large n,
type (c) xn > 0 yn < 0 zn > 0 wn < 0 for large n,
type (d) xn > 0 yn < 0 zn < 0 wn < 0 for large n,
type (e) xn > 0 yn > 0 zn < 0 wn < 0 for large n.

Proof. Let (x, y, z, w) be a nonoscillatory solution of (S) such that xn > 0 for large n. There are
eight possible types of these solutions. We prove that solutions of the following types do not exist.
type (i) xn > 0 yn > 0 zn < 0 wn > 0 for large n,
type (ii) xn > 0 yn < 0 zn < 0 wn > 0 for large n.
type (iii) xn > 0 yn < 0 zn > 0 wn > 0 for large n.

Assume that there exist n1 ∈ N0 and a solution such that zn < 0, wn > 0 for n ≥ n1 ≥ n0. From the
fourth equation of (S) we have ∆wn > 0 and this implies that there exists k > 0 such that wn ≥ k for
large n. Using (H3) we have f3(wn) ≥ wn ≥ k. By the summation of the third equation of (S) we
have

zn − zn0 =
n−1∑
i=n0

Aif3 (wi) ≥ k

n−1∑
i=n0

Ai.

Passing n→∞, we get a contradiction with the fact that zn < 0. This excludes solutions of types (i)
and (ii).

Assume that (x, y, z, w) is a type (iii) solution. Since w is positive and increasing, there exists k > 0
such that wn ≥ k for large n. By the summation of the third equation of (S) we get

zn − zn0 =
n−1∑
i=n0

Aif3 (wi) ≥
n−1∑
i=n0

Aiwi ≥ k

n−1∑
i=n0

Ai.
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Using the summation of the second equation of (S) we have

yn − yn0 =
n−1∑
i=n0

Bif2 (zi) ≥
n−1∑
i=n0

Bizi ≥ k
n−1∑
i=n0

Bi

(
i−1∑
j=n0

Aj

)
.

Passing n→∞ we get the contradiction with the negativity of y.

By Definition 3, the system (S) has the weak property B if there exist only nonoscillatory solutions
of type (a) and (c). Solutions of type (a) are called strongly monotone and solutions of type (c) are
called Kneser solutions.

Lemma 3. Any solution of type (a) satisfies

lim
n→∞

xn =∞, lim
n→∞

zn =∞. (6)

Proof. Let (x, y, z, w) be a solution of type (a). Since y is positive and increasing, there exists k > 0
such that yn ≥ k for large n. By the summation of the first equation of (S) we get

sn − sn0 =
n−1∑
i=n0

Aif1 (yi) ≥
n−1∑
i=n0

Aiyi ≥ k
n−1∑
i=n0

Ai. (7)

Passing n→∞ we get sn →∞. Lemma 1 implies that s is unbounded if and only if x is unbounded.
Therefore limn→∞ xn =∞.

Since w is eventually positive increasing, thus there exists l > 0 such that wn ≥ l for large n. By the
summation of the third equation of (S) we obtain that zn →∞ for n→∞.

Lemma 4. Any solution of type (c) satisfies

lim
n→∞

wn = 0. (8)

Proof. Assume that the solution (x, y, z, w) is of type (c). Since w is eventually negative increasing,
there exists limn→∞wn = l ≤ 0. Suppose l < 0. By the summation of the third equation of (S) we
obtain a contradiction with the positivity of z. Therefore limn→∞wn = 0.

3 Weak property B and property B

The first theorem gives the simple criterion that the system (S) has property B, the proof of the
theorem is omitted, we can proceed the similar way as in [8].

Theorem 1. Assume (H5). If
∞∑

n=n0

Dn =∞ (9)

holds, then the system (S) has property B.

In view of Theorem 1, in the sequel, we assume
∑∞

n=n0
Dn <∞.
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Theorem 2. Let (H1) - (H3) hold. If

∞∑
i=n0

Di

(
i−1∑
j=n0

Aj

)
=∞, (10)

then the system (S) has weak property B.

Proof. The weak property B means that there are no solutions of type (b), (d) and (e). Therefore
we have to exclude these solutions. Assume that (x, y, z, w) is a type (b) solution. By (7) we get
limn→∞ xn = ∞, thus there exists k > 0 such that xn ≥ k for large n. By the summation of the
fourth equation of (S) we get

w∞ − wn =
∞∑
i=n

Dif4 (xγi) ≥
∞∑
i=n

Dixγi ≥ k
∞∑
i=n

Di,

Using the summation of the third equation of (S) we have

zn − zn0 =
n−1∑
i=n0

Aif3 (wi) ≤
n−1∑
i=n0

Aiwi,

−zn + zn0 ≥
n−1∑
i=n0

Ai (−wi) ≥ k
n−1∑
i=n0

Ai

(
∞∑
j=i

Dj

)
.

Passing n→∞ and using the change of summation

∞∑
i=n0

Ai

(
∞∑
j=i

Dj

)
=

∞∑
i=n0

Di

(
i−1∑
j=n0

Aj

)
=∞,

we get the contradiction with the boundedness of z. Thus, solutions of type (b) do not exist.

Assume that (x, y, z, w) is a type (d) solution. Since y is negative and decreasing, there exists k < 0
such that yn ≤ k for large n. By the summation of the first equation of (S) we get

sn − sn0 =
n−1∑
i=n0

Aif1 (yi) ≤
n−1∑
i=n0

Aiyi ≤ k
n−1∑
i=n0

Ai. (11)

Using the summation of the fourth equation of (S) we have

wn − wn0 =
n−1∑
i=n0

Dif4 (xγi) ≥
n−1∑
i=n0

Dixγi (12)

From (H2) and (4) we have sn ≥ xn − xn−σ ≥ −xn−σ for large n. Thus

xn ≥ −sn+σ. (13)

Using this and (12) and (11) we get

wn − wn0 ≥
n−1∑
i=n0

Di (−sγi+σ) ≥ −k
n−1∑
i=n0

Di

(
γi+σ−1∑
j=n0

Aj

)
.
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Passing n→∞ we get from (H1) that (10) implies

∞∑
i=n0

Di

(
γi+σ−1∑
j=n0

Aj

)
=∞.

Thus, we get the contradiction with the negativity of w.

Assume that (x, y, z, w) is a type (e) solution. Since z is negative and decreasing, there exists h < 0
such that zn ≤ h for large n. By the summation of the second equation of (S) we get

y∞ − yn =
∞∑
i=n

Bif2 (zi) ≤
∞∑
i=n

Bizi ≤ h

∞∑
i=n

Bi.

Using the summation of the first equation of (S) we get

sn − sn0 =
n−1∑
i=n0

Aif1 (yi) ≥
n−1∑
i=n0

Aiyi ≥ −h
n−1∑
i=n0

Ai

(
∞∑
j=i

Bj

)
. (14)

In case pn ≤ 0, we get sn ≤ xn from (4). Using this fact, the summation of the fourth equation of (S)
and the estimation (14) we obtain

wn − wn0 =
n−1∑
i=n0

Dif4 (xγi) ≥
n−1∑
i=n0

Dixγi ≥
n−1∑
i=n0

Disγi ,

wn − wn0 ≥ −h
n−1∑
i=n0

Di

(
γi−1∑
j=n0

Aj

(
∞∑
k=j

Bk

))
. (15)

In case pn > 0 we use (5) and we get

wn − wn0 ≥
n−1∑
i=n0

Dixγi ≥
n−1∑
i=n0

Disγi−σ(1− pγi),

wn − wn0 ≥ −h(1− P )
n−1∑
i=n0

Di

(
γi−σ−1∑
j=n0

Aj

(
∞∑
k=j

Bk

))
. (16)

Passing n→∞ we get the contradiction with the negativity of w in both cases (15), (16).

Theorem 3. Let (10) hold. In addition, if

∞∑
i=n0

Ai

(
∞∑
j=i

Dj

)
=∞ (17)

holds, then the system (S) has property B.
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Proof. By Theorem 2, the system (S) has only solutions of type (a) and (c). First, assume that
(x, y, z, w) is a solution of type (a). Thus, w is positive increasing and there exists a constant k1 > 0
such that wn ≥ k1 for large n. From the third equation of (S) we get

zn − zn0 =
n−1∑
i=n0

Aif3(wi) ≥
n−1∑
i=n0

Aiwi ≥ k1

n−1∑
i=n0

Ai.

Substituting this into the second equation of (S) we obtain

yn − yn0 =
n−1∑
i=n0

Bif2(zi) ≥
n−1∑
i=n0

Bizi ≥ k1

n−1∑
i=n0

Bi

(
i−1∑
j=n0

Aj

)
.

Passing n→∞ we have yn →∞.

Taking into account lim(1 − pn) = 1 − P > 0, there exists p > 0 such that 1 − pn ≥ p, for large n.
Using the summation of the fourth equation of (S) and (5) we have

wn − wn0 =
n−1∑
i=n0

Dif4 (xγi) ≥
n−1∑
i=n0

Dixγi ≥
n−1∑
i=n0

Disγi−σ(1− pγi) ≥ (18)

≥ p
n−1∑
i=n0

Disγi−σ ≥ kp
n−1∑
i=n0

Di

(
γi−σ−1∑
j=n0

Aj

)
.

From (18) we get wn →∞ passing n→∞.

Now, assume that (x, y, z, w) is a solution of type (c). Assume that limxn = t1 ≥ 0. First, assume
that t1 > 0. Using the summation of the third and the fourth equation of (S) we have

zn − zn0 =
n−1∑
i=n0

Aif3(wi) ≤ −t1
n−1∑
i=n0

Ai

(
∞∑
j=i

Dj

)
.

Passing n→∞ we get the contradiction with the boundedness of z, therefore limn→∞ xn = 0.

Now, assume that lim yn = t2 ≤ 0. First, assume that t2 < 0. Using the summation of the first and
the fourth equation of (S) we obtain

wn − wn0 =
n−1∑
i=n0

Dif4(xγi) ≥
n−1∑
i=n0

Dixγi ≥
n−1∑
i=n0

Di(−sγi+σ) ≥ −t2
n−1∑
i=n0

Di

(
γi+σ−1∑
j=n0

Aj

)
.

Passing n→∞ we get the contradiction with the boundedness of w, therefore limn→∞ yn = 0.

Finally, assume that lim zn = t3 ≥ 0. First, assume that t3 > 0. Using the summation of the first and
the second equation of (S) we get

sn − sn0 =
n−1∑
i=n0

Aif1(yi) ≤ −t3
n−1∑
i=n0

Ai

(
∞∑
j=i

Bj

)
.

Since
∞∑
i=n0

Ai

(
∞∑

j=i+1

Bj

)
=

∞∑
i=n0

Bi

(
n−1∑
j=n0

Aj

)
=∞,
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then we get the contradiction with the boundedness of s. Since x is bounded, then s is bounded as
well. Therefore limn→∞ zn = 0.

Now, we get the assertion by Lemma 3, Lemma 4 and Definition 4.

4 Conclusion
We found conditions for the system (S) to have proberty B. We extended the conditions from [8].
Now, we can investigate the system with the different conditions or it could be interesting to find the
sufficient conditions for system (S) to have any type of the solutions.
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