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Abstract. Dynamic parameters tuning is a required operation when significant 
vibration of a construction component is expected. Structural dynamic modification 

represents modal-spectral parameters changes by adding substructures to the original 

to avoid resonances and reduce the level of vibration. Those substructures, which 
influent mass, stiffness and damping matrices of the original system, can increase or 

decrease natural frequencies and influents corresponding mode shapes according to 

the desire behaviour of the structure. Additional tuning of dynamic parameters 

performed by structural dynamic modification is a useful operation to adapt the 
structure to changed operation conditions. Modal and spectral parameters of the 

modified structure can be determined by analytical approach using structural 

coefficient matrices of modifying substructures and modal parameters of the original 
structure, that can be obtained experimentally 
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1 Introduction 

A common occurrence in engineering practice are undesirable levels of vibration in the 

structures of machinery, which decrease their functionality, safety, reliability and service life. 

Current trends in the dynamic operation of machinery inherently generate such undesirable 

effects. That is to say, increasing the operational capacity of the machine (higher speeds, 

higher loads, more changes in operational regimes, etc...) are financially counterproductive to 

any desired savings in the material/technological realization of such structures. The dynamic 

properties of the machines structure itself, to an extent, affects the level of vibration of each of 

its individual parts. In the research stage, it is now necessary to extensively analyse/synthesize 

the dynamic properties of the machine and its structure followed by the optimization of 

significant parameters. Therefore an effective methodology to push (decrease) any high level 
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of vibration in critical parts of the machines structure is becoming increasingly more 

interesting to satisfy more demanding technological and economic design requirements.  

In the design of a structure which must vibrate within acceptable levels during operation, an 

suitable (effective) concept must be chosen. For example, on the basis of numeric analysis 

and optimization of individual structural components, it is possible to create a real structure 

which satisfies the operational conditions set upon it. But in general, the real structure 

partially exhibits differing properties than those predicted computationally, either due to 

inappropriate simplification or inaccurate physical or geometrical parameters. It is therefore 

necessary to modify critical structural elements in order to fulfil the desired properties. To do 

this it is possible to use some correction method for the mathematical models. With them it is 

possible to refine the parameters of critical nodes in the structure to reflect the operation of 

the real structure. Afterwards it is necessary to repeat the optimization procedure of the 

revised structural parameters such that, based on them, the built structure reflects the required 

properties.  

Another possible approach to modify the dynamic properties of the structure is through modal 

synthesis. This approach combines the modal properties of the real structure obtained through 

measurements and the modal properties of additional components obtained computationally 

or through measurements. This approach is particularly effective if the computational model 

of the built structure is incorrect. Through optimization of the additional components it is 

possible to obtain the desired properties of a modified structure while reducing the 

computational requirements and increasing accuracy of the results. The aforementioned 

approach is valid for a variety of applications, most notably the automotive and aerospace 

industries amongst many others. 

2 Modelling a structure with a vibroinsulating layer made of aluminium foam 

To reduce unacceptable levels of vibration, layers of different material are usually used to 

reduce the levels of vibration. Materials continue to evolve. New materials have not only 

good damping properties, but their behaviour also show other favourable characteristics. Such 

materials are typically difficult and expensive to produce, however the economic benefits 

from improving the properties if a structure far outweigh the initial cost for their production 

[1], [3]. 

2.1 Properties of aluminium foam 

Metal and aluminium foams are amongst one group of materials with special properties. Their 

combination of beneficial physical properties allows them to be useful for a wide variety of 

applications in practice. The main benefit is in their low weight, high stiffness, and good 

damping properties. They are materials with many beneficial properties and wide spectrum of 

application. Even though these materials are relatively expensive the appropriate design of 

geometrical parameters and applying them in suitable locations, can effectively ensure the 

required stiffness and damping parameters to be achieved with a minimal use of material. A 

large part of practical calculations lays in the determination of frequency transfer (modal 

properties). Determining the modal properties for a specific position and geometrical 
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parameter of the vibro-isolating layers subsequently followed by the processing of the results, 

yields optimal parameters.   

As was discussed, aluminium foams are used also as a material with properties of 

vibro-isolation. Tab. 1 shows a comparison of material properties between conventional 

materials and aluminium foam (Alulight from Alulight International GmbH) [1], [18], [4]. In 

respect the properties of Alulight, it is possible to apply where relatively stiff structural 

components are needed with a minimum of added weight, or where heat resistant, high 

stiffness, low density structures are required.   

Material Density ρ 

[kg/m2] 

Modulus E 

[GPa] 

E 

10-5 

[GPa.kg2/m6] 

Alulight 500 5 2,0 

Epoxy 1300 3 0,3 

steel 7800 210 0,4 

aluminium 2700 69 1,0 

glass 2500 70 1,1 

concrete 2500 50 0,8 

Tab 1. Comparison of physical properties of aluminium foam and conventional materials. 

2.2 Modelling of layered structures

Currently, the finite element method is used when modelling vibration of a machine structures 

[4], [5], [19], [13]. Using this method, it is possible to solve for layered materials and directly 

use elements respecting the required inertial, stiffness and damping properties. In the case of a 

thin, layered beam and considering the bending vibration, the element matrices are written in 

the form: 
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(1) 

where the displacement and rotation within nodes of the element are represented by the 

vector: [yj, k, yj, k,]
T, where mE is the mass, E is the equivalent module of elasticity, J 

is the equivalent moment of inertia of the cross-section area and l is the length of the 

layered element (Fig. 1). The equivalent modulus of elasticity is the beams module of 
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elasticity E = E1. The moment of inertia of the cross-sectional area is the moment of 

inertia of the transformed cross-sectional area of the added layer [13], [6]. 

Fig. 1. Layered beam element with cross section and transformed cross section. 

The element damping matrix is expressed in proportional terms BE =  KE, where =/,  

is the loss coefficient, and is the angular excitation frequency. The loss coefficient is 

determined experimentally and is given by the manufacturer. Tab. 2 shows the necessary 

material properties of aluminium foam to calculate the element matrix [1], [18], [2]. 

Density  kg/m3 50

0 

750 1000 

Module of 

Elasticity E 

GPa 5 9 14 

Loss coefficient 

  

- 0,0

03 

0,004 0,004 

Tab 2. Comparison of physical properties of aluminium.

The complete FEM beam model is created by connecting elements in corresponding node 

points (see Fig. 2).  

Fig. 2. FE model of the beam. 

Its mathematical model has the form: 

 M q  + B q  + K q = f (2)

where matrices for mass M, stiffness K and damping B have a striped character and make up 

an overlapping element matrix in the rows and columns where elements have a common 

displacement and rotation (the same node). Simultaneously in the the element matrices the 

first two rows are tied to the displacement and rotation in the jth node and the rest are tied to 
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the displacement and rotation of the kth node. The same applies to the columns of the element 

matrices. 

3  Reducing the Systems Degrees of Freedom 

FEM models that closely represent the dynamic behaviour within the given frequency range 

tend to have many degrees of freedom (DOF) and therefore the coefficient matrices of the 

system are large. However, when measuring, it is necessary to analyse the measurement 

points of the structure whose DOF (for example rotation) are not measurable or poorly 

measured. Therefore, it is beneficial to reduce the model as to be consistent with the 

experiment. This means that the computational model will be represented by movements 

which are measured and are true to the tested results within the given frequency range. There 

are many methods which can be used to reduce such a model [7], [9] – [12], [16].  

Methods for reduction, in principle, are distinguished by the approximation of insignificant 

common motions in the system (“insignificant – omitted - secondary” DOF) within the 

considered range of frequencies, and the significant common dynamic motion (“dominant - 

primary - main” DOF) determined based on physical/modal properties of the system (Fig. 3). 

In this way the insignificant (secondary) DOF are omitted based on the approximation 

function chosen based on identifying the (primary) DOF. 

Fig. 2. FE model with primary and secondary nodes. 

In principle, the shown method is based on the election of the transformation matrix T of type 

n, r and ranking m, for the transformation of coordinates q(t) of the model by dimension n to 

the coordinate qR(t) of the model with dimension r, where: 

q(t) = T qR(t). (3) 

Such a transformation matrix characterizes the relationship between secondary and primary 

coordinates of the system. Modifying relation (2) using this transformation will yield the 

reduced model in the form: 

MR 
R ( )tq  + BR 

R ( )tq + KR 
R ( )tq = fR (t),  (4) 

where 

MR = TT M T ; BR = TT B T ; KR = TT K T ; f = TT f(t). (5)
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The accuracy of any method depends on the choice of a suitable transformation matrix T, 

which should ensure that the reduced model to the degree r remains modally and spectrally 

(in r selected coordinates, m  r selected Eigen modes) true to the original model to the nth 

degree. 

It follows from the modal analysis of such a system that the reduction will be more accurate 

depending on how correctly the transformation equation between elements of the structures 

Eigen modes vj (n
th amount) and from them the selected components vRj (r amount) [9], [11]. 

Afterward, if:  

 vj = T vRj,  (6) 

then both of the following relations apply: 

(K + sj B + sj
2 M) vj = 0, (KR + sj BR + sj

2 MR) vRj = 0,   (7) 

where sj (in amount m  r) are the values from the considered frequency range. 

In cases where, for example, the system with transformrmation matrix T (System Equivalent 

Reduction and Expansion Process – SEREP method) in the form: 

 T = 
 

0O 0R

 
 
 
  



I

V V
, V0 = T V0R, (8) 

where V0  R n,m is a matrix with m – significant Eigen modes , which are applicable for 

specific directional actions and excitation frequency ranges. Its submatrix V0R  R r,m is 

composed of elements characterized by r – most significant common deviations of the 

structure (usually m  r << n) and its sub matrix V0O  R o,m is composed of elements 

characterized by o = n - r remaining elements of this set.     

Using the transformation matrix T, the relationship for orthonormality are satisfied only in the 

considered frequency range. In the experimental verification of the aforementioned reduction 

method, if the sub matrix V0R is determined experimentally and sub matrix V0O is determined 

analytically, then the given relations are satisfied in respect to the minima of the quadratic 

standards of such a regression model. This problem, in general, occurs as a result of an 

inconsistent analytical model to the r - degree with the nth degree of the model (that is with 

errors in modelling and measuring) [10, 8, 17, 14]. Such a transformation matrix must 

represent the real properties of the structure, which is used for example for the correction of 

the mathematical models of the systems based on measured data.  

Inconsistencies often occur due to errors in the analytical modelling of the structure and in 

measurements during experimental tests. Therefore, in order to minimize computational errors 

in terms of problem verification, identification, system corrections (modal synthesis), it is 

necessary to choose the elements of the modal vector which dominantly represent the 

orthonormal properties of the system. This will guarantee the rank m of the transformation 

matrix T. Their selection can be objectivised by a singular or QR (Gramm-Schmidt 

orthogonalization process) decomposition of the modal matrix V0. Any sudden decrease 

(large difference) between j and k - th singular values of the modal matrix (1 > 2 ... j  >> k  k+1

> … ) [7], [9], [12] will not occur in the case where the analytically obtained submatrices are
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given because in this case the errors from measurements do not occur, however matrix V0

must be regular (its rank must be m).     

Since the modal analysis is relatively taxing computationally, the transformation matrix T can 

be expressed by the already computed coefficient matrices of the system. The following is 

true for the system (2) (matrices assumed to be symmetric and B=0 with homogeneous 

solution), expanded to block form: 

 ( 11 12

21 22

 
 
 
  

K K

K K
- 0j

2 11 12

21 22

 
 
 
  

M M

M M
) 

0

0

r

j

o

j

 
 
 
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 

v

v

 = 0 , V0 = {v0j}, v0j = 
0

0

r
j

o
j

 
 
 
 

v

v
 (9) 

where  K11, M11R r,r, K12 = K21
T, M12 = M21

T
R r,o, K22, M22 R

 o,o , rv0jR r , ov0jR o. 

then for the transformation matrix the following applies:  

 ov0j = TD rv0j = -(K22 - 0j
2 M22)

-1 (K21 - 0j
2 M21) 

rv0j, T = 

D

 
 
 

I

T
 (10) 

Relation (9) approximates the static condition – negligible inertial effects (Guayan reduction 

method) in the form [6]: 

 ov0j = -K22
-1 K21 

rv0j , T = TG = -K22
-1 K21,   (11) 

where the reduced matrix of the model is then: 

KR = K11 - K12 K22
-1 K21, BR = B11 - K12 K22

-1 B21 - B12 K22
-1 K21 + K12 K22

-1 B22 K22
-1 K21 

MR = M11 - K12 K22
-1 M21 - M12 K22

-1 K21 + K12 K22
-1 M22 K22

-1 K21,  (12) 

This approximation becomes more accurate the lower the natural angular frequencies Red1 if 

 (K22 - 0
2 M22) = 0  (13) 

is greater than the maximum angular frequency of the considered excitation frequency range. 

It is therefore obvious that the selection of coordinates, which will be considered in further 

relations (primary), effect the accuracy of this method. Whereas the residual (secondary) 

coordinates are from the area of high stiffness and low mass. The stated selection can be 

objectively expressed in cases where the coefficient matrices have a dominant diagonal 

character. Any j-th coordinate which satisfies the following condition can be considered as 

residual (secondary) coordinates:  

k
jj

m
jj

> max.  (14) 

The static condition (11) can be precisely satisfied in cases where, for example, the model is 

obtained by FEM with diagonal mass matrices M12 = M21
T = 0, whereas the mass of the 

system is concentrated only at specific nodes, while the coordinates of the residuals are 

represented by the secondary coordinates connected with M22 = 0.  
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In more complex systems, where it is necessary to reduce the dynamic properties of 

individual connecting between components a combination of this and the previously 

mentioned (Craig – Bampton method) can be used [7], [12] . In the system where the force 

effects act on the boundary of individual substructures qR (in the primary coordinates) and the 

dynamic properties of the individual substructure qO are represented by their modal properties 

(secondary coordinates), then for a single j-th substructure [10, 14] it then applies:  

 qOj = V0j Ojq + TGj qRj,  (15) 

qj = 
R

O s

 
 
 
 

q

q
 = 

0 G s

 
 
  

0 I

V T

O

R s

 
 
 
 

q

q
 = THj qHj, (16) 
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 
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 
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 
 
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 
 
 
 
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 
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 
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 
 
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q
 = 

j

 
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  

0

f
(17) 

 MRj Rjq + BRs Rjq  + KRj qRj = fRj,    MRj = MP3j, BRj = BPj,    KRj = KPj, (18) 

where V0j,  j, 0
2

j are modal-spectral properties of the jth substructures  and matrix TGj 

results from the Guayan reduction method (11). The modal properties of the substructure are 

commonly obtained experimentally or on the basis of modal analysis of the FEM model of the 

relatively complex structure. Penetration of the common coordinates of individual 

substructures into one global vector q can later form the complete structure of the model. In 

this way it is possible to significantly reduce the DOF of the systems FEM model without 

compromising its dynamic properties. 

4 Design of the added structural element by method of modal synthesis 

Often times it is necessary to change the dynamic p properties of an existing structure. If the 

modal properties are known, the modal synthesis method can be used to obtain the desired 

modal – spectral properties. In such a case, the modal properties of the original system are 

virtually realized, for example, through FEM modeling of the added substructures in such 

a way that the modal properties of the modified system change in the desired way. The added 

substructures must be described through the same coordinates of the original (existing) 

structure, for which any of the above mentioned methods for reduction can be used and thus 

ensure the connection between the original and added structures [7], [9], [12]. 

If the existing proportionally damped system with the measured modal – spectral properties 

V0P, 0P, 20P, is added to by the substructure represented by the reduced (to common 

coordinates) FEM model with coefficient matrices MA, KA, BA, where the damping matrix BA 

is also proportional, the resulting system obtains the modal – spectral properties V0L, 0L, 

20L. Usually the added component is located in a defined area and not evenly across the 

original structure, the resulting structure then becomes non-proportionally damped.  
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4.1 Modal analysis of the non-porportionally damped system 

To determine the modal and frequency properties of the disproportionately damped system, 

the system from n dimensional space represented by coefficients matrices M, B, K of order n 

is transformed to a system of 2n dimensional space with the coefficient matrices N, P [15] , 

[16] , [17]. Then

 N x  - Px  = r, (19) 

where 

P = 
- 
 
  

K 0

0 M
,    N = 

 
 
  

B M

M 0
R2n,2n,  x = 

 
 
  

q

q
, r = 

 
 
  

f

0
R2n. (20) 

From the solution of the eigenvalues for the symmetric coefficient matrix it also applies: 

(P - sj N) wj = 0,     (21) 

 (K + sj B + sj
2 M) vj = 0, (22) 

where vector vj represents its jth Eigen mode and sj = - j  i Dj is its jth eigenvalue (assuming 

subcritical damping of the system). The real part of the eigenvalues represent the damping 

properties and the imaginary part represents the frequency properties. The conditions for 

orthonormality can be expressed by:    

 WT P W = S, WT N W = I, (23) 

      S VT M V S - VT K V = S, VT B V + VT M V S + S VT M V = I (24) 

where for the spectral matrix S and modal matrix W and V:  

S = diag(sj) C,2n,    W = {wj} = 
 
 
 
  

V

V S
C2n,2n, V = {vj}Cn,2n. (25) 

In cases where the substructure with the proportional damping matrix is for example 

B =  M +  K, the solution of the eigenvalues is simplified to [16]: 

(K - M 0j
2) v0j = 0,    K V0 - M V0 0

2 = 0, (26) 

 0 = diag(0j) Rn,     = diag(j) Rn, V0 = {v0j}Rn,n,

 V0
T K V0 = 0

2, V0
T M V0 = I, V0

T B V0 = 2  = 2 ( I +  0
2).  (27) 

The diagonal matrix 0 contains elements of natural angular frequencies of the non-damped 

system 0j and the matrix of constant decay  contains elements of constant decay for a 

proportionally damped system j = 2  0j, where is the comparative damping of the 

analyzed substructure. The modal matrix V0 is composed of vectors v0j representing the Eigen 
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modes of this system. For the eigenvalues sj and spectral matrix S of the proportional system 

the following applies:   

 sj = - j  i (0j
2 - j

2)0,5 = - j  i Dj,      (28) 

 S = -   i (0
2 - 2)0,5 = -   i (0

2 - 2)0,5 = -   i D.  (29) 

4.2 Modal synthesis of non-proportionally damped system 

The above mentioned relations can be used to determine the modal and spectral properties of 

the original substructures modified by means of added substructures. The modal and spectral 

properties of the original proportionally damped system V0P, 0P, 2 0P are determined 

experimentally. The added, also proportionally damped system, is represented by the FEM 

model with coefficient matrices MA, BA, KA. These are composed so that the FEM model of 

the added structure reduces to the measured coordinates and forms elements of the matrix that 

are responsible for the measured coordinates. Elements of this matrix contain coordinates for 

which the added structures do not belong because it is localized only at predetermined areas 

equal to 0. This way, the experimentally and analytically obtained matrices have the same 

dimension. 

The properties of such a modified system represent the modal and spectral matrix VL and SL. 

From the conditions of orthonormality affected from the modal analysis of the modified 

system in 2n space (23), it follows that: 

 [VL
T, SL VL

T] 
-( )

P A

P A

 
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 




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0 M M
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V

V S
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B B M M
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L L

 
 
 
 

V

V S
 = I,    (31) 

If transformation is used 

 VL = V0P TL, (32) 

  [TL
T, SL TL

T]

2 T
-(   )

0P 0P A 0P

T
  

0P A 0P





 
 
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 
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Ω V K V 0

0 I V M V
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L L

 
 
 
 

T

T S
 = SL (33) 

  [TL
T, SL TL
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T T2     
P 0P A 0P 0P A 0P

T   
0P A 0P

 
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 
 
 
 

 


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T S
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These relations represent conditions for orthonormality of the transformed system with 

spectral matrix SL and modal matrix: 

WT = {wTj} = 
L

 
L L

 
 
 
 

T

T S
. (35) 

and with the coefficient matrices 

 PT = 

2 T-(   )
0P 0P A 0P

T   
0P A 0P

 
 
 
 
 





Ω V K V 0

0 I V M V
, (36) 

 NT = 

T T2     
P 0P A 0P 0P A 0P

T   
0P A 0P

 
 
 
 
 

 



Δ V B V I V M V

I V M V 0
. (37) 

PT and NT are known elements of the coefficient matrix. the unknown spectral and modal 

matrices SL = diag(sLj) and WT can be determined by solving the eigenvalues in the form 

(21):     

(PT – sLj NT) wTj = 0.  (38) 

Directly from this the modal matrix of the modified system SL emerges and therefore 

obtaining the modal matrix of the modified system VL can be achieved using the 

transformation relation in (32) 

4.3 Modal synthesis of the non-proportionately damped layered beam 

The above mentioned modal synthesis method can be used also in determining the modal and 

spectral properties of beam structures with added layers of vibroisolation at specific points. A 

very simple illustration of such a system can be explained on an existing cantilever beam with 

a connected (added) beam which creates the modified beam seen in Fig. 4. also shows the 

schematic illustration of the above mentioned modal synthesis methodology. 

From the schematic, coefficient matrices MN, KN of the added beam reduces to the 

measurement coordinates y2, y3, which are shared with the original beam. The reduced 

coefficient matrices MR, KR obtained in this way create a non-zero sub matrix expanded by 

the coefficient matrices MA, KA of the added beam such, that it also represents the extra 

unmeasured coordinates y1, y4. This way the matrices have the same dimension as those 

measured by natural angular frequency, constant decay and with the modal matrix   0P, P, 

V0P.   
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Fig. 4. Schematic methodology of modal synthesis. 

The presented method can be automated and used for the parameter optimization 

of vibroisolating layers (orientation, geometry, material properties, etc...) [14]. The 

schematic representation of optimizing position a and thickness h of the vibroisolating layer 

with respect to the maximum ratio of damping  in the second Eigen mode is shown in 

Fig. 5. (c). From this dependence it is obvious that by increasing the thickness of the isolating 

layer, the ratio of damping also gradually increases. More complex characteristics have 

values of proportional damping dependent on the location of the isolating layer, which 

directly depends on the corresponding eigen modes in the presented system. Fig. 6. 

depicts the dependence of proportional damping of the 3rd and 4th modes and the position of 

the vibroisolating layer. The steel beam with an aluminium foam layer was considered (Tab. 1 

and Tab. 2 – 500kg/m3). 

(a) (b) (c) 

Fig. 5. Hierarchy (left to right) for the optimization of position “a” and thickness “h” of 

the vibro-isolating layer.
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Fig. 6. Dependence of the proportional damping (3rd and 4th modes) on the position of the 

vibroisolating layer. 

From the presented properties, it can be seen how it is possible to achieve the desired 

damping of some Eigen modes by choosing the appropriate position and thickness of the 

vibroisolating layer. Therefore, on the basis of modal synthesis it is possible, without any 

time-consuming calculations, to determine how effective the chosen parameters of the 

vibroisolating layer are and in what manner do the dynamic properties of the modifies 

structure change.   

4.4 Structural dynamic modification of the beam by aluminium foams demonstrated on 

FE model 

Structural modification of the beam by aluminium foam layers causes the change of dynamic 

parameters of the original structure, which is known as well as structural dynamic 

modification.  It is possible to tune natural frequencies of the beam structure by adding one or 

more additive aluminium layers on suitable places due to which natural frequency change is 

required.  Effective natural frequency tuning can be done by adding of modifying structure to 

places of anti-nodes of the appropriate mode shape. Desired dynamic parameters of the beam 

structure can be reached using aluminium layers with corresponding parameters that can be 

calculated by mentioned modal synthesis method. Next figure shows first three natural 

frequencies of bending vibration of the cantilever beam. 

8.3881 Hz 147.00 Hz 52.539 Hz 

Fig. 7. First three natural frequencies and mode shapes. 
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The picture bellow demonstrates structural dynamic modifications of the mentioned beam to 

reach desire modal and spectral properties.  

8.7114 Hz 58.078 Hz 150.85 Hz 

8.7898 Hz 56.832 Hz 171.15 Hz 

Fig. 8. Structural dynamic modifications of the beam to change its natural frequencies. 

As is shown in pictures, modification with the one layer mostly influenced the second mode 

shape, while the two-layer modification is appropriate for the increasing of the third natural 

frequency.  

5 Conclusion 

This work presents methodology which allows for the purposeful change in dynamic 

properties of existing machine structures by adding additional components. This method is 

based on modal synthesis and is particularly effective in cases where it is not possible to 

obtain the reliable and standalone FEM model of the structure but measured modal properties 

of the system are available. At the same time, it is considered that the added components can 

be modelled utilizing FEM. Based on modal synthesis, it is possible to determine the modal 

properties with added component, using the methodology presented in this paper.  

The presented methodology is applied to a situation where the added component is a layer of 

aluminium foam and is illustrated on a beam of a structure. 
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