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Abstract. In this paper we studied degree distributions of functional brain 

networks, which a re extracted from the real fMRI measurements of young healthy 

participants at  three different correlati on thresholds of voxel activity. To explain how 

the degree distribution changes with the decreasi ng threshold, we created a dynamic 

network model. The model reflects how initially scale-free networ ks change their 

structure, manifested in the degree distribution, due to the processes of the netwo rk

growth and edge addition. 
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1 Introduction 

1.1 fMRI  

Functional Magnetic Resonance Imaging (fMRI) is a technique capturing high-resolution 

images of the brain neural activity, based on the blood-oxygen-level-dependent (BOLD) 

signal [4]. Images in the fMRI method are captured in a series of 3-d slices. A single slice is 

comprised of a grid of discrete 3D regions known as voxels. Spatial resolution of a single 

fMRI image is around 3 3
mm  per each voxel. fMRI is an ideal technique for deriving 

functional brain connectivity, defined by the extent to which spatially distinct regions of the 

brain exhibit similar behavior over time. By modelling this functional connectivity as a 

network (functional brain network), we can explore the ways in which regions of the brain 

interact, and use techniques from the graph theory to evaluate their topological characteristics. 

Voxels, are represented in a network as nodes, and interaction between voxels as edges   [3, 8, 

13].  

1.2  Graph theoretical concepts 

Graph ),( EVG  consists of VN   nodes, connected by EM   edges [18], while V  and 

E denote node and edge sets, respectively. Network is a graph that has some dynamics. 

Binary network is a network having undirected unweighted edges. If there are no multiple 

edges and no node is connected to itself in a binary network, it can be represented as a simple 
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graph [18]. All the following definitions are for simple, binary networks. The node degree is 

the number of edges incident with the node. The degree distribution shows how many nodes 

in the network has certain degree. To measure clustering of nodes clustering coefficient of the 

node  i  is defined as: 
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where 
i

m denotes the number of edges among neighbors of the node i and 
i

k is its degree. 

Average network clustering coefficient is denoted as C . Average shortest path l , is defined 

as an average of shortest paths (measured in the number of edges) between all pairs of nodes 

[18]. As shown by [1] and others [5, 9], real-world networks developed by self-organized 

processes, have usually scale-free structure. Scale-free property is reflected in the power law 

degree distribution (2). The normalized number of nodes with the degree k ,  kP , decreases 

as a power law with the scaling exponent  ,  

  
 kkP . (2) 

As shown in [1], the scale-free structure develops due to a preferential node linking. 

Fig. 1. Steps in functional network creation. A: Correlation matrix for the fMRI volume of 

each participant. B: From each correlation matrix, three unweighted,  undirected networks 

were created, using three correlation thresholds 321
  . So the resulting networks 

contain different number of nodes and edges. 

1.3 The goals 

The aim of this paper is to study and model real world networks by means of the graph 

theoretical methods. For this purpose, the functional brain networks derived from the brain 

fMRI data of healthy young (HY) participants collected by Buckner et al. [2] were used.  We 
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analyze how degree distributions of functional brain networks change due to the correlation 

threshold changes. Based on this analysis we developed a network model that links the 

underlying network dynamics with the network structure manifested as the degree distribution 

at different thresholds. We test how the model fits the data by its numerical simulation.  

Fig. 2. Degree distributions from left to right:  distribution at the threshold 818398.0
1
 , the 

threshold 899876.0
2
 , and the threshold 962249.0

3
 . See how the scale-free network 

structure is  destroyed, as the correlation threshold gets lower and lower. 

2 The data  

2.1 The fMRI datasets 

The raw fMRI data were collected by Buckner et al. [2] and are publicly available (data set 

no. 2-2000-118W from the fMRI Data Center: http://www.fmridc.org). Structural and 

functional MRI data were acquired from 41 subjects in total. The participants were divided 

into three groups: healthy young (HY) participants, healthy elderly (HE) participants and 

elderly participants with diagnosed Alzheimer's disease (AE). The HY group used for our 

studies has 14 subjects (9 females/5 males) with the mean age 21.1 years. The data are 

preprocessed before being used in this and other studies [13]. Preprocessing applied to the 

data is  described in detail in [11]. 

2.2 Functional brain networks 

For each participant in each group the prepossessed fMRI data were  used  to create functional 

brain networks [11]. Functional brain networks, contrary to the neuronal brain networks, are 

based on the temporal correlation of signals between the voxels over some time. Thus, the 

functional brain network reflects the functional cooperation of different brain areas. Because 

the smallest unit of the measured fMRI signal is an integrated signal of the neurons contained 
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in one voxel, voxels are natural candidates for the nodes of the functional brain network. If 

the two voxels functionally cooperate, the measured BOLD signal is highly correlated over 

time.  The Pearson correlation coefficient is calculated for all the voxel pairs: 

 
       

     jViV

tjVtiVtjVtiV
jir



,,,,
,


 , (3) 

where  jir ,  is the correlation coefficient between the pair of nodes,  tmV , , jim , is the 

measured activity in the m -th voxel at time t , . denotes the time average, and 

      
222

,, tmVtmVmV  . A link between the voxel pair (nodes) is established, if 

  jir , , where   is a prescribed correlation threshold (Fig.1). We opted for an absolute 

value of correlation that is both strongly positively and strongly negatively correlated voxels 

to be included in the functional network. Thus, the networks are unweighted and undirected, 

because correlation  jir ,  is a symmetric function. 

Fig. 3. The best fit for the threshold 2 . Model fit for the participant No.29, `+' -- data,  `x' --

simulation. 800 iterations, b=3.7479, a=1.3958, 14.243
1
b ,  0.0

1
a ,  mse=0.086. 

2.3 Towards the model of functional network dynamics 

We used the degree distributions extracted from the HY functional networks for different 

correlation thresholds, in order to get an insight into the network changes as the value of the 

threshold changes from high to low. The data for HY group were chosen because of their 

coherence and the smallest differences among subjects. Based on this analysis we built our 

dynamic network model. We are aware, that to speak about "dynamics" in the context of our 

model is not quite correct, because the independent variable is not time. Nevertheless, we 

believe, to use this term with respect to the model iteration steps, is not misleading.  

Character of the degree distribution is an indicator whether the functional brain networks are 

scale-free or not. The scale-free property means that the model should incorporate preferential 

linking, while the loss of the scale-free structure with the changing correlation threshold, 
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means that there are random link additions present too. As the power law degree distribution 

gradually changes, each intermediate stage reflects the ratio of preferential versus random 

linking. All of this should be incorporated into the formal mathematical model.  

Fig. 4. The worst fit for the threshold 
2

 , `+' -- data,  `x' -- simulation. Model fit for the

participant No. 32 , 800 iterations, 61.3b , 87.1a , 52,528
1
b ,  0.0

1
a , 28.0mse . 

3 Results

3.1 Data analysis – whole brain network 

In this section, a basic network analysis of the measured data is presented. The networks are 

constructed at the three different correlation thresholds 899876.0,819398.0
21
  and 

962249.0
3
 . The reason for these threshold values are explained in [11]. For the lowest 

correlation threshold 819398.0
1
 , the average number of network nodes is 

10487
1


HY

N (interval of the individual values is  11140,9850 ). The average group 

clustering coefficient is 4594.0
1


HY

C ; and the average group shortest path is 5677.2
1


HY

l . 

All individual values of the average clustering coefficients are in the interval 

 5593.0,4029.0  and that of the shortest paths are in the interval  6877.2,3519.2 ,

respectively. For the lowest correlation threshold, the degree distribution does not have a 

power law character (Fig. 2). 

For the threshold 899876.0
2
 , the group average number of nodes is somewhat lower, i.e. 

10426
2


HY

N with the individual values in the interval  11140,9842 . The average group

clustering coefficient is 3982.0
2


HY

C , with individual values in the interval  

 4822.0,36128.0 and the average group shortest path is 7981.3
2


HY

l with the individual 

values in the interval  015.4,3168.3 . The degree distribution reveals a more pronounced

power law tail, with the average group exponent 41.1
2


HY

  (see Fig. 2). 
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The situation changes for the correlation threshold 962249.0
3
 . The functional brain 

networks have a well-defined scale-free structure, reflected in the power law degree 

distribution with the average scaling exponent 36.1
3


HY

  (Fig. 2) with the individual values 

in the interval  7812.1,9346.0 . Other characteristics are 3616.0,7280
33


HYHY

CN and 

3596.7
3


HY

l , with the individual values in the intervals    4049.0,3366.0,8582,6482 , and

 6049.9,6129.5 , respectively. 

Fig. 5. Typical fit for the threshold 
2

 , `+' -- data,  `x' -- simulation. Model fit for the

participant No. 16, 800 iterations, 9.4b ,  0.0a ,  48.255
1
b ,  0.0

1
a , 19.0mse . 

4  The model 

Recently, several papers proposed models of functional brain networks using various 

principles [7, 14, 16]. Our data analysis has shown that the properties of the functional brain 

networks depend mainly on the correlation threshold. For the lower correlation thresholds, the 

degree distributions do not have a power law character, but rather have a shape more 

resembling the degree distribution of the random graph [18]. As the threshold increases, the 

distributions develop power law tails (Fig. 2). Similar scenario is described in Scholz et al. 

[15] for the noisy scale-free networks. The authors started from an initially scale free network,

disturbed by several types of noise: i.e. random link removal, random link exchange and

random link addition. They have studied how the degree distribution drifts from the power

law character with the increasing  noise.

We adopted the idea of the random link addition noise to reflect degree distribution changes 

while lowering the threshold of correlation. Unlike the original model, we allow the network 

to grow and we also allow preferential link addition. We suppose, it is possible to lower the 

threshold by such a slow way, that at each threshold jump one new node comes to the system. 

Thus, each network growth step or iteration is marked by an addition of a new node. The 

situation, can be described as follows: One starts at the highest threshold 3
 , where the 

network is scale-free having 0
N nodes, 0

L edges and the power law degree distribution. Then

the threshold is lowered. New nodes and edges are added to the network by both -  
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preferential and random linking. New node is added due to the fact, that the signal of such a 

new node (voxel) is now correlated with some node (voxel) signal already present in the 

network, which were not previously correlated at the higher threshold. Each new node brings 

1
a  new edges, which are linked preferentially and a  edges linked randomly. Simultaneously 

another process takes place. As the threshold decreases, some correlations between the pairs 

of nodes already present in the network become significant. Therefore new edges are 

distributed randomly ( b ) and preferentially (
1

b ) among the nodes being already in the 

network. Thus, our network grows in the number of nodes and edges. Because the network at 

the highest threshold is scale-free, we suppose, that the real correlations between voxels 

construct the scale-free structure, which is, as the threshold lowers, disturbed by the 

accidental correlations (edges). These correlations are caused either by the real similarity 

between the two voxel signals or by their accidental resemblance.  

Fig. 6. The best fit for the threshold 
1

 . Model fit for the participant No. 29, `+' -- data,  `x' –

simulation, 800 iterations, parameters  b=14.44, a=12.24, 39.888
1
b , 77.1

1
a , mse=0.29. 

The rate equation describing the above-mentioned dynamic processes in the model is: 

           nkPnpnkPnpnkP
kkkk

,1,11,
,11, 

 . 4 

The transition term  np
kk 1,   is defined as 

 
  

 nAL

kba

nN

ba
np

kk












0

11

0

1,
2

122
      , 5 

where    
11

2 babannA  . In equation (4),  nkP ,  is the normalized number of nodes 

having the degree k at the iteration n. At each iteration, this number changes, due to the fact, 

that some nodes having at the previous iteration n the degree k-1, gain a new edge. This is 

expressed in the first term of the equation (4). The second term expresses, that some nodes 

have the degree k already at iteration n and with the probability  np
kk ,1

1


  no new edges are 

added. In equation (5), 00
, LN denote initial number of nodes and edges, ba,  are the 

number of randomly added edges per iteration, where a  is the number of edges fetched by a 
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new coming node and b is the number of edges added between older network nodes. 

Similarly, 
1

a denotes the number of edges by which a new node links preferentially to the 

network and 
1

b  is the number of edges linking older nodes preferentially. Factor two denotes, 

that some edges are linked by both of their ends, unlike those edges, which have one edge end 

linked to the new coming node. The transition term  np
kk ,1  describes how the number of 

nodes having the degree k  changes due to the above-mentioned dynamic processes. The first 

term of  np
kk ,1  says that ba 2  edge ends are linked randomly, with equal probability 

nN 
0

1
 to the node in the network. The number of nodes in the network at iteration n is 

nN 
0 , because, as stated before, at each iteration (threshold step) exactly one new node 

appears. The second term of  np
kk ,1 describes preferential attachment of 

11
2ba  edge ends 

with the probability proportional to the node degree. The normalization factor is a sum of all 

node degrees  nAL 
0

2 .  

Fig. 7. The worst fit for the threshold 
1

 .  Model fit for the  participant No 41, `+' -- data, `x' -

- simulation. 800 iterations,  97.6b , 88.6a , 46.824
1
b , 06.0

1
a ,  38.1mse . 

5  Results of numerical simulations 

We simulated the proposed model (4, 5) numerically. Each simulation was done for all 

appropriate functional brain HY networks and compared to the data at the thresholds  
2

 and

1
 .  Here we present the best, the worst and the typical fit for the threshold

2
 (Fig 3, Fig 4,

Fig 5) and the same for the threshold 
1

 (Fig 6, Fig 7, Fig 8).

First, we used the experimental data to find the parameters in the power law distributions at 

threshold 3
  (6). This threshold corresponds to the initial number of iterations 0

0
n . Thus, 

the initial degree distribution is power law i.e.:   
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  
 ckkP .             (6) 

Both parameters c  and   are derived from the data. The power law distribution at the highest 

threshold was normalized by the constant z  calculated from the equation  

 dkkPz 




1

, (7) 

and it was checked whether the sum of all probabilities of the initial distribution is close to 

one after the normalization. We excluded the networks, for which the integral (7) does not 

converge (case 0.10.0   ). The model (4, 5) was first applied to model the transition 

between the two highest correlation thresholds 3
 and

2
 . Each model has been iterated

02
NN   times for the defined set of parameters 

11
,,, bbaa .  20

, NN denote the number of 

nodes at the initial network state (threshold 3
 ) and at the network state corresponding to the

correlation threshold 
2

 , respectively. In each network growth step (a discrete small threshold

change), a fixed number of edges is added, namely 
02

02

NN

LL




, where 

2
L is the number of 

network edges gained from the measured data at the threshold 
2

 and 0
L is the initial number 

of edges. To find the best set of parameters 
11

,,, baba  we used the hill climbing algorithm, in 

which the mean square error between the measured and simulated data is calculated.  From 

the best fit parameters in the current simulation, fifteen new sets of parameters were derived 

by the slight  perturbations of the currently best fit parameter set. This is a standard procedure 

in the hill climbing algorithm. The hill climbing algorithm was iterated 800 times. Second, the 

same job as before has been done to model the data at the threshold 
1

 . The only difference is, 

that the model was iterated 01
NN  times, where 

1
N is the number of nodes at the threshold 

1
 .  Also the number of edges added in each threshold (network growth) step is different,

namely
01

01

NN

LL




, where 

1
L is the number of edges in the functional brain network created at

the lowest threshold 
1

 .

5. 1  Results for the HY group

In the HY group we excluded one participant (number 39), since the   exponent is such that 

the normalization (7) does not converge. In Fig 3, the best fit at the 
2

 threshold is presented.

The participant number is 29 and for this participant the overall best fits have been achieved.  

We got the worst fit at the 
2

 threshold for the participant number 32 (Fig.4).  For illustration

also a typical results (Fig.5) in the HY group are presented. Next results are for the lowest 

threshold 
1

 (Fig.6). We show the best fits again for the participant (No. 29).   The worst fit

has been achieved for the participant 41 (Fig. 7). The typical results at this threshold are 

presented at Fig. 8. 
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6  Summary 

In this paper, the degree distributions of functional brain networks  were analyzed. We found 

that: 

1. At the threshold 
3

 the degree distributions are scale-free (Fig.2). This is in agreement

with previous studies [10, 6]  on different fMRI data sets. 

Fig. 8. The typical fit for the threshold 
1

 . Model fit for the participant No. 32, `+' -- data, `x' -

- simulation. 800 iterations, 43.22b , a=5.34, 64.867
1
b , 97.0

1
a , mse=0.87. 

2. The character of the degree distribution  changes with the threshold.  As the threshold

decreases, the degree distributions are losing their scale-free character.

3. There are individual differences in the degree distributions at each threshold.

4. Our model is successful in fitting the different correlation thresholds.

The  distribution  analysis formed a prerequisite for the model addressing the question which 

dynamical processes causes the scale-free functional brain networks to change their structure.  

In conclusion, we created a mathematical models of noisy growing networks inspired by the 

behavior of functional brain networks derived from the fMRI brain scans of healthy young 

participants. This research was supported by VEGA grant 1/0039/17. Preliminary work was 

done at the University of Otago, Dunedin, New Zealand, at the Department of Computer 

Science.  We are grateful for their financial and technical support. I thank Paul McCarthy for 

providing  functional brain networks used  in this study and for the  parts of  Fig. 1.  I am 

grateful to Ľ. Beňušková and B. Rudolf for careful reading of the manuscript.  
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