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Abstract. Our contribution is meant to be an example of multidisciplinary approach to the 
teaching of numerical methods. By employing the Michaelis-Menten’s model for enzyme 
kinetics, we show a practical application of numerical methods in biochemistry. Given the 
experimental data, we find a dependence of a reaction rate on a concentration of a substrate. In 
a preliminary section, we derive and explain The Michaelis-Menten kinetics from behaviour 
of biochemical reactions. In a first part, the problem is linearized and then solved by the least 
squares method. In a second part, we do not use linearization and solve the original problem 
by the Newton’s method for systems of non-linear equations. We conclude our contribution 
with a comparison of both approaches and results. We also offer several problems for students 
to clarify and deepen their understanding of the linearization. Our solution is provided in a 
form of a thoroughly commented MATLAB Code.
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1 Introduction
We put the strong accent on the theoretical aspects of engineering which allows our graduates to
develop an interdisciplinary way of thinking and to be able to handle engineering problems with
efficiency and bold creativity. For this purpose we have developed a collection of solved exercises
where (besides other things) we show usage of numerical methods in applied sciences (see [4]). We
strongly believe that the students of engineering are capable of comprehension and even appreciation
of the abstract concepts of the pure mathematics. Nevertheless, the first contact should be carried out
under the cover of a real tangible problem. In what follows you can taste a flavour of our blend of
biochemistry, numerical mathematics and MATLAB coding.

2 Michaelis-Menten kinetics
In 1913, Michaelis and Menten proposed a model which is one of the best-known for enzyme kinetics
([2, p. 7]). They assumed a reaction scheme where the enzyme E converts the substrate S into the
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product P through a two-step process with a complex C being an intermediate. The reaction scheme
is represented by

S + E
k1


k−1

C
k2


k−2

P + E.

Bothe reactions must be reversible but reaction rates are typically measured under conditions where
P is continually removed which prevents the reverse reaction k−2 to happen. Hence, it is reasonable
to assume no reverse reaction occurs:

S + E
k1


k−1

C
k2⇀P + E.

Let us denote the quantities s = [S], c = [C], e = [E] and p = [P ]. The law of mass action then gives
four differential equations for the rates of change of s, c, e and p,

ds

dt
= k−1c− k1se,

de

dt
= (k−1 + k2)c− k1se,

dc

dt
= k1se− (k2 + k−1)c,

dp

dt
= k2c.

Let us remark that p can be found by direct integration and also de
dt

+ dc
dt

= 0 which means that e+ c is
constant. We denote the constant by e0 and it has meaning of the total amount of available enzyme.

Michaelis and Menten made an additional assumption that the substrate s is in instantaneous equilib-
rium with the complex c, which means

k1se = k−1c.

Since e + c = e0, we obtain a system of two equations, we consider c and e as unknowns and solve it
for c:

c =
k1e0s

k−1 + k1s
=

e0s
k−1

k1
+ s

.

Finally, the velocity v of the reaction is given by

v =
dp

dt
= k2c =

k2e0s
k−1

k1
+ s

.

3 Introducing the problem
Michaelis-Menten model takes the form of an equation

v(x) =
a1x

a2 + x
,

relating a reaction rate v to a concentration of a substrate denoted by x. Constants a1 and a2 are
unknown.

Analyze the experimental data (see Table 1) and find appropriate values of constants a1 and a2.
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xi [10−4 mol · dm−3] 2.267 2.703 3.575 4.098 4.098 3.974 4.211

vi [10−8 mol · dm−3 · s−1] 1.220 2.451 4.897 9.780 14.688 19.576 24.483

Tab. 1. The experimental data

4 Solution with linearization
The original equation

v =
a1x

a2 + x

can be rewritten into an equivalent form

1

v
=

a2 + x

a1x
⇒ 1

v
=

a2
a1
· 1

x
+

1

a1
.

After substitutions V := 1
v
, X := 1

x
, A := 1

a1
and B := a2

a1
, it becomes

V = BX + A.

A manoeuvre we have just described is called a linearization (see [1, p. 201]) of a problem. Consid-
ering the new variables X and V we obtain a transformed data, see Table 2.

Xi 0.441 0.370 0.280 0.244 0.244 0.252 0.238

Vi 0.820 0.408 0.204 0.102 0.068 0.051 0.041

Tab. 2. The linearized data

To acquire reasonable values of constants A and B we employ the least square method (see [3, p. 85]
or [5, p. 431]) for the modified problem. Hence, our goal is finding a minimum of the function

Ψ(A,B) =
∑
i

[
(BXi + A)2 − Vi

]2
.

First, we compute the partial derivatives of Ψ and we set both of them equal zero.

∂Ψ

∂A
= 2

∑
i

(BXi + A− Vi) = 0,

∂Ψ

∂B
= 2

∑
i

(BXi + A− Vi)Xi = 0.

After straightforward modification we get the normal equation in a matrix form( ∑
i 1

∑
iXi∑

i Xi

∑
i X

2
i

)(
A

B

)
=

( ∑
i Vi∑

i XiVi

)
.

The normal equation is easily solvable with use of MATLAB.
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>> x = [2.267 2.703 3.575 4.098 4.098 3.974 4.211];
>> v = [1.220 2.451 4.897 9.780 14.688 19.576 24.483];
>> X = 1./x;
>> V = 1./v;
>> [7 sum(X); sum(X) sum(X.^2)]\[sum(V); sum(X.*V)]
ans =

-0.8054
3.5455

Therefore A = −0.8054 and B = 3.5455. If we go back to the original unknowns, we end up with

a1 =
1

A
= −1.2416, a2 =

B

A
= −4.4022,

hence vL(x) =
−1.2416x

−4.4022 + x
.

5 Solution without linearization
The linearization leads to a great simplification of the problem. Nevertheless, we pay a price for this
simplicity as the resulting function is not necessarily the best fit in the least-squares sense. Now, we
carry out a computation without the linearization trick. We are looking for a minimum of a function

Ψ(a1, a2) =
∑
i

(
a1xi

a2 + xi

− vi

)2

.

We compute the partial derivatives of Ψ and we set both of them equal zero.

∂Ψ

∂a1
= 2

∑
i

(
a1xi

a2 + xi

− vi

)
xi

a2 + xi

= 2
∑
i

(
a1x

2
i

(a2 + xi)2
− xivi

a2 + xi

)
= 0,

∂Ψ

∂a2
= 2

∑
i

(
a1xi

a2 + xi

− vi

)
−a1xi

(a2 + xi)2
= −2

∑
i

(
a21x

2
i

(a2 + xi)3
− a1xivi

(a2 + xi)2

)
= 0.

We adjust the equations by cancelling the constants 2 and −2. Moreover, we denote the functions by
f1 and f2 and rewrite the equations as

f1(a1, a2) =
∑
i

(
a1x

2
i

(a2 + xi)2
− xivi

a2 + xi

)
= 0,

f2(a1, a2) =
∑
i

(
a21x

2
i

(a2 + xi)3
− a1xivi

(a2 + xi)2

)
= 0.

The computation is carried out in MATLAB. We begin with definitions of vectors x, v and functions
f1, f2. Take notice of a vector A as an input variable of the functions.
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>> x = [2.267 2.703 3.575 4.098 4.098 3.974 4.211];
>> v = [1.220 2.451 4.897 9.780 14.688 19.576 24.483];
>> f1 = @(A)sum(A(1)*x.^2./(A(2)+x).^2-x.*v./(A(2)+x));
>> f2 = @(A)sum(A(1).^2*x.^2./(A(2)+x).^3-A(1)*x.*v./(A(2)+x).^2)

;

We have obtained a rather difficult system of equations but with the assistance of the Newton’s
method (see [3, p. 31] or [5, p. 283])may gain at least an approximate solution. We need to find
a Jacobi matrix of the mapping f(a1, a2) = (f1(a1, a2), f2(a1, a2))

> which is

Jf (a1, a2) =


∂f1
∂a1

(a1, a2)
∂f1
∂a2

(a1, a2)

∂f2
∂a1

(a1, a2)
∂f2
∂a2

(a1, a2)

 =

=


∑
i

x2
i

(a2 + xi)2

∑
i

−2a1x
2
i

(a2 + xi)3
+

xivi
(a2 + xi)2∑

i

2a1x
2
i

(a2 + xi)3
− xivi

(a2 + xi)2

∑
i

−3a21x
2
i

(a2 + xi)4
+

2a1xivi
(a2 + xi)3

 .

Assuming Jf is regular at points where necessary, the Newton’s method defines a sequence (ak) such
that

a0 = (−1.2416,−4.4022)> (i.e., the result of linearized problem),

ak+1 = ak − Jf (ak)−1 f(ak).

Then, we define the Jacobian matrix in MATLAB.

>> Jf = @(A)[sum(x.^2./(A(2)+x).^2),
sum(-2*A(1)*x.^2./(A(2)+x).^3+x.*v./(A(2)+x).^2);
sum(2*A(1)*x.^2./(A(2)+x).^3-x.*v./(A(2)+x).^2),
sum(-3*A(1)^2*x.^2./(A(2)+x).^4+2*A(1)*x.*v./(A(2)+x).^3)

];

We pick a result of the linearized problem as an initial approximation and accomplish the first step of
the Newton’s method. We also save the computed value into the variable X.

>> X = [-1.2416;-4.4022];
>> Xnew = X-inv(Jf(X))*[f1(X);f2(X)], X=Xnew;
Xnew =

-1.2411
-4.4224
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We repeat the last command while the visible digits of the approximation vector Xnew change.

% After several repetitions:
>> Xnew = X-inv(Jf(X))*[f1(X);f2(X)], X = Xnew;
Xnew =

-1.6433
-4.5168

We may conclude that

a1 = −1.6433, a2 = −4.5168

is a good approximation of the problem and hence

vN(x) =
−1.6433x

−4.5168 + x
.

6 Solution by MATLAB

We may also use a non-linear least-squares solver implemented in MATLAB. It’s application is simple
but it uses internal numerical methods which are sensitive on a choice of initial approximation. Since
we are furnished with knowledge of a very good approximation of solution, we can choose a very
precise initial approximation here.

>> f = @(a)a(1)*x./(a(2)+x)-v;
>> a0=[-1 -5]; % the initial approximation
>> aM = lsqnonlin(f,a0)
aM =

-1.6430 -4.5168

MATLAB generates a solution

vM(x) =
−1.6430x

−4.5168 + x
.

Notice that the parameters are almost the same as in case of the previous solution without lineariza-
tion.

7 Comparison of results
Let us summarize our results

vL(x) =
−1.2416x

−4.4022 + x
, vN(x) =

−1.6433x

−4.5168 + x
.

The linearization is a very useful tool which may help us handle problems that would be unsolvable
otherwise. Nevertheless, as we observe in the Table 3 and in the Figure 1, the results obtained by
linearization may be distorted in general.
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xi vi vL(xi) vN(xi) (vL(xi)− vi)
2 (vN(xi)− vi)

2

2.2670 1.2200 1.3182 1.6559 0.0097 0.1900
2.7030 2.4510 1.9751 2.4489 0.2265 0.0000
3.5750 4.8970 5.3660 6.2378 0.2199 1.7979
4.0980 9.7800 16.7261 16.0799 48.2482 39.6882
4.0980 14.6880 16.7261 16.0799 4.1538 1.9373
3.9740 19.5760 11.5229 12.0311 64.8519 56.9257
4.2110 24.4830 27.3451 22.6290 8.1915 3.4375

Tab. 3. Comparison of results

Finally, let us show the sums of squares of both results which allows to measure an accuracy in sense
of least squares ("the smaller the better"). Their difference is less negligible than one would probably
expect ∑

i

(vL(xi)− vi)
2 = 125.9015,

∑
i

(vN(xi)− vi)
2 = 103.9764 .
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Fig. 1. Comparison of results and data
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8 The examples of linearization
Linearization is a simple tool to transform a non-linear approximation problem to a linear one. We can
apply a linear least-squares method afterwards. The quality of a resulting approximation is usually
satisfying even though a routine linearization might add an error which is difficult to control. On
the other hand, mathematically rigid usage of a non-linear least-squares method leads to a non-linear
system of equations which is often solvable only by a numerical (and therefore only approximate)
method.

We append a table of some of the most useful linearization formulas.

v = a1x
a2 V := ln v, X := lnx, A := ln a1, B := a2 V = A + BX

v = a1ea2x V := ln v, X := x, A := ln a1, B := a2 V = A + BX

v = ea1+
a2
x V := ln v, X := 1

x
, A := ln a1, B := a2 V = A + BX

v = ln(a1 + a2x) V := ev, X := x, A := a1, B := a2 V = A + BX

v = a1xe
a2x V := ln v

x
, X := x, A := ln a1, B := a2 V = A + BX

v = a1 + a2 lnx V := v, X := lnx, A := a1, B := a2 V = A + BX

Conclusion
We hope this exercise teaches a lesson that every problem in numerical mathematics permits many
solutions. It can be very useful to use a simplified model of the situation. Nevertheless, you cannot
expect to obtain the same result as if you do all the hard work.
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