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1 Introduction
Let β > 0, 0 < T ≤ ∞ and Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω of
the class C2+β . We denote QT = Ω × (0, T ). We study the following initial–boundary value
Navier–Stokes problem

∂tu+ ν curl2u+ u · ∇u+∇P = 0 in QT , (1.1)

divu = 0 in QT , (1.2)

a) u · n = 0, b) curlu× n = 0 on ∂Ω× (0, T ), (1.3)

u( . , 0) = u0 in Ω. (1.4)

Here, u = (u1, u2, u3) and P denote the velocity of motion and the associated pressure. By n
and ν we denote the outer normal vector field on ∂Ω and the kinematic coefficient of viscosity,
respectively. For simplicity we suppose ν = 1. Equations (1.1), (1.2) describe the motion of a
viscous incompressible fluid in domain Ω.

H. Navier formulated so called Navier’s boundary conditions in 1824. They takes the form

u · n = 0, [T · n]τ + γ u = 0. (1.5)
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The symbols T and the subscript τ denote the stress tensor and the tangential component, re-
spectively. The first Navier’s condition is the condition of impermeability of the wall. The
second condition expresses the requirement that the tangential component of the stress, with
which the fluid acts on the boundary, is proportional to the velocity. The stress tensor has the
form T = −pI + ν [∇u + (∇u)T ]. Consequently, the second Navier condition (1.5b) can be
written in the form

ν curlu× n− 2ν u · ∇n+ γ u = 0.

If we suppose that coefficient γ of friction between the fluid and the boundary is zero (the case
of the so called perfect slip) and the curvature of the wall is neglected then (1.5) is equivalent
to our boundary condition (1.3b). The Navier–Stokes equations with the boundary conditions
(1.3) are studied, e.g., in papers [1], [2], [3], [4], [13], [16].

1.1 Notation of function spaces and operators.

We denote vector–valued functions and spaces of such functions by boldface letters. We use
these function spaces and operators:

◦ c is a generic constant, i.e. a constant whose value may vary from line to line. On the other
hand, numbered constants have fixed values throughout the whole paper.

◦ C∞0,σ(R3) = {φ ∈ C∞(Ω); supp φ ⊂ Ω, div φ ≡ 0}.

◦ Lsσ(Ω) is a closure of C∞0,σ(Ω) in Ls(Ω).

◦ The Hemholtz projection of Lsσ(Ω) onto Ls(Ω) is denoted by Pσ. The following holds

Ls(Ω) = Lsσ(Ω)⊕G(Ω) (1.6)

where G(Ω) = {∇p; p ∈W1,s(Ω)}, see, e.g., [6] for the proof.

◦ L2
σ(Ω)⊥ = {∇ϕ; ϕ ∈ W 1,2(Ω)} (The symbol L2

σ(Ω)⊥ denotes the orthogonal complement
to L2

σ(Ω) in L2(Ω)).

◦ W1,2
σ (Ω) := W1,2(Ω) ∩ L2

σ(Ω). (Functions in this space are divergence–free in Ω and have
the normal component on ∂Ω equal to zero in the sense of traces.)

◦ ‖ . ‖k (respectively ‖ . ‖l,k) denotes the Lk–norm (respectively the W l,k–norm) of a scalar–
valued or vector–valued or tensor–valued function in Ω. The scalar product in L2(Ω) is
denoted by ( . , . )2.

◦ The dual space to W1,2
σ (Ω) is denoted by W−1,2

σ (Ω). The duality between the elements of
W−1,2

σ (Ω) and W1,2
σ (Ω) is denoted by 〈 . , . 〉Ω and the norm in W−1,2

σ (Ω) is denoted by
‖ . ‖−1,2.

◦ W2,2
σ, nc(Ω) :=

{
u ∈ W2,2(Ω) ∩W1,2

σ (Ω); curlu × n = 0 on ∂Ω
}

. (The subscript „nc”
indicates the Navier–type boundary conditions.)

◦ H(Ω) is the space of all divergence–free functions u ∈ W1,2(Ω) such that u × n = 0 on
∂Ω.

◦ T1 := curl is the operator with the domain D(T1) = W2,2
σ, nc(Ω).

◦ T2 := curl is the operator with the domain D(T2) = H(Ω). The kernel of both the
operators T1 and T2 is trivial because domain Ω is simply connected.

639



◦ S := T2 ◦ T1 is an operator in in L2
σ(Ω). S is one of the concrete realizations of the so

called Stokes operator. The domain of S is D(S) = D(T1) = W2,2
σ, nc(Ω).

Below we list some properties of operators T1, T2 and S, see [13] and [16].

◦ T1 is a linear bijective operator from W2,2
σ, nc(Ω) onto H(Ω). The inverse operator is bounded

as an operator from W1,2(Ω) into W2,2(Ω).

◦ T2 is a linear bijective operator from H(Ω) onto L2
σ(Ω). The inverse operator is bounded as

an operator from L2(Ω) into W1,2(Ω).

◦ Operator S is a linear bijective operator from W2,2
σ, nc(Ω) onto L2

σ(Ω). The inverse operator
S−1 = T−1

1 ◦T−1
2 is a bounded operator from L2

σ(Ω) onto W2,2
σ, nc(Ω) and S = −∆.

◦ Operator S commutes with the projection Pσ, i.e.

PσS = SPσu

for u ∈ D(S). Consequently

−Pσ∆ = −∆. (1.7)

◦ Operator S is positive and selfadjoint in L2
σ(Ω). The eigenvalues of S form a non–decreasing

sequence {λi} of positive real numbers and they have the same algebraic and geometric
multiplicity. Corresponding eigenfunctions {ei} can be chosen so that they form a complete
orthonormal system in L2

σ(Ω).

◦ Although the operator S1/2 is different from T1, one can easily check the identities:
‖S1/2u‖2

2 = (Su,u)2 = ‖curlu‖2
2 = ‖T1u‖2

2 for u ∈ D(S). Consequently, there exist
positive constants c1 and c2 so that for u ∈ D(S), we have

c1 ‖S1/2u‖2 ≤ ‖u‖1,2 ≤ c2 ‖S1/2u‖2 . (1.8)

Inequalities (1.8) show that the norms ‖S1/2. ‖2 and ‖ . ‖1,2 are equivalent in W2,2
σ, nc(Ω). Using

the Friedrichs–type inequality ‖u‖2 ≤ C ‖∇u‖2 (1.9)

(where C = C(Ω)), satisfied by vector functions whose normal component is zero on ∂Ω
(see [7, Exercise II.5.15]), we deduce that the norm ‖S1/2. ‖2 is also equivalent to ‖∇. ‖2 in
W2,2

σ, nc(Ω).

◦ If u ∈W1,2(Ω) and v ∈ H(Ω) then (u,T2v)2 = (u, curlv)2 = (curlu,v)2.

◦ If u ∈ W1,2(Ω) and v ∈ D(S) then (u,Sv)2 = (u,T2 ◦ T1v)2 = (u, curl2v)2 =
(curlu, curlv)2.

Definition 1 Let u0 ∈ L2
σ(Ω). A function u ∈ L∞

(
0, T ; L2

σ(Ω)
)
∩ L2

(
0, T ; W1,2

σ (Ω)
)

is said
to be a weak solution of the problem (1.1)–(1.4) if∫ T

0

∫
Ω

[
−u · ∂tφ+ ν curlu · curlφ+ (u · ∇)u · φ

]
=

∫
Ω

u0 · φ( . , 0)

for all infinitely differentiable functions φ inQT such that φ( . , t) ∈W1,2
σ (Ω) for all 0 ≤ t ≤ T

and φ( . , T ) = 0.
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The boundary condition (1.3b) does not explicitly appear in the weak formulation of the prob-
lem (1.1)–(1.4). However, it can be shown by standard methods that if the weak solution is
smooth then it satisfies (1.3b).

Definition 2 Let u be a weak solution of the problem (1.1)–(1.4). We say that u is a strong
solution if u(0) ∈ W1,2

σ (Ω) and u ∈ Lr
(
0, T ′; Ls(Ω)

)
for all 0 < T ′ ≤ T , T ′ < ∞ and for

some r, s ∈ R, satisfying 2 < r <∞, 3 < s <∞ and 2/r + 3/s = 1.

The following lemma is proved in [10].

Lemma 1 If u is a strong solution of the problem (1.1)–(1.4) then u ∈ L2
(
0, T ′; W2,2

σ, nc(Ω)
)
,

∂tu ∈ L2
(
0, T ′; L2

σ(Ω)
)

for every 0 < T ′ ≤ T , T ′ <∞. Moreover, u is a continuous function
from [0, T ′] into W1,2

σ (Ω) (after an eventual change on a set of measure zero).

2 Local in time existence of strong solutions
In this section we prove the main result of the paper, providing sufficient condition for existence
of strong solutions which satisfy the boundary conditions (1.3) on given time interval. Simi-
lar results for solutions which satisfy the boundary condition (1.9) were published, e.g., in [5].
J.C. Robinson et al. proved similar results in [14], in which they studied local in time existence
of strong solutions with initial data in L3. They proved sufficient conditions for local in time
existence of strong solutions of the Navier-Stokes on the whole space and for local in time
existence of strong solutions which satisfy the space-periodic boundary conditions. Our result
which is formulated in Theorem 1 is a modification of their result for problem with boundary
conditions 1.3 on some smooth bounded convex domain.

Very similar problems were solved in [9], [10], [11] and [12]. In these papers authors studied
problems of robustness and stability of strong solutions with respect to perturbations of initial
velocities.

In this section we deal with the non-steady Stokes system.

∂tϕ+ ν curl2ϕ = 0 in QT , (2.1)

divϕ = 0 in QT , (2.2)

a) ϕ · n = 0, b) curlϕ× n = 0 on ∂Ω× (0, T ), (2.3)

ϕ( . , 0) = ϕ0 in Ω. (2.4)

Weak solutions of the problem (2.1)–(2.4) are defined the following way:

Definition 3 Let ϕ0 ∈ L2
σ(Ω). A function ϕ ∈ L∞

(
0, T ; L2

σ(Ω)
)
∩ L2

(
0, T ; W1,2

σ (Ω)
)

is said
to be a weak solution of the problem (2.1)–(2.4) if∫ T

0

∫
Ω

[
−ϕ · ∂tφ+ ν curlϕ · curlφ] =

∫
Ω

φ0 ·ϕ( . , 0)

for all infinitely differentiable functions φ inQT such that φ( . , t) ∈W1,2
σ (Ω) for all 0 ≤ t ≤ T

and φ( . , T ) = 0.
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2.1 The main result

Theorem 1 There exists an absolute contant ε > 0 with the following property: Let u0 ∈
W1,2

σ (Ω), τ ∈ R, 0 < τ ≤ T and ϕ be a solution of (2.1)–(2.4) with initial velocity u0 such
that

‖u0‖3

∫ τ

0

∫
Ω

|∇ϕ|2|ϕ| < ε. (2.5)

Then there exists a strong solution u of the problem (1.1)–(1.4) on the time interval (0, τ).

2.2 The mathematical model of behaviour of fluid

We study qualitative properties of solutions of the Navier-Stokes equations with the boundary
conditions of the Navier’s type in this contribution. We derive a criterion for local in time
existence of strong solution. Although this result looks to be a theoretical one, it has a very
specific relationship to fluid dynamics. The system of the Navier-Stokes equations which is
solved in this contribution is a model of behaviour of incompressible fluid in bounded domains.
Equations (1.1) which are called the Navier-Stokes equations are derived from the momentum
conservation law. Equation (2.2) which is called the continuity equation expresses the fact that
liquid is incompressible. Conditions (1.3) describe interaction between fluid and fixed wall. We
are supposing density and viscosity of fluid are constant, in this model.

We can say that the system (1.1), (1.2), (1.4) with various types of boundary conditions (we are
studying this system with boundary conditions (1.3) here) is the most commonly used model of
behaviour of incompressible fluid. This model is studied in at least two areas of mathematics.
Many mathematicians dealing with the theory of partial differential equations publish papers in
which the qualitative properties of solutions of this model are studied. At the same time, many
mathematicians working in the field of numerical mathematics publish papers that deal with the
approximate numerical solutions of this model. These approximate solutions are then applied to
solve various technical problems in different areas, mechanical engineering, civil engineering,
hydrodynamics. It should be said that the results dealing with the qualitative properties of this
system often help to optimize work of numerical mathematicians.

Unfortunately, mathematicians and physicists are not yet sure if this mathematical model corre-
sponds to the real fluid behavior. In the qualitative theory of the Navier-Stokes equations there
are still some open problems that are of crucial importance. Suppose we have a weak solution to
the problem with a smooth enough initial velocity. It is well known that there is a weak solution
of this problem, satisfying the energy inequality in addition. This means that its kinetic energy
is uniformly bounded over the entire time interval. We do not know whether this solution sat-
isfies energy identity (energy identity is a special case of energy inequality). This means we do
not know whether or not the fluid behavior corresponds with the energy conservation law. The
next open question remains whether or not the dissipative energy is uniformly limited over the
entire time interval. If we knew that there exists a weak solution of the problem which is also
a strong solution, all of the above mentioned questions would be positively answered. Such a
solution would satisfy energy identity and its dissipative energy would be uniformly bounded
over the time interval. We also know that if there exists a strong solution, then this solution is
the unique strong solution. In addition, it is the only solution that satisfies energy equality. It
is even known that such a solution would be then the only solution that satisfies the energy in-
equality. It is therefore reasonable to think that such a solution would be a mathematical model
that actually describes the behavior of the fluid.
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The open problem mentioned here is one of the most well-known open problems of applied
mathematics, included in the so-called millennium problems, and the Clay Institute has issued
a financial reward for solution of this problem.

The main result of this paper (Theorem 1) provides a partial contribution to the solution of this
problem. We know that there is a time interval on which the solution is strong, and we know
how to determine the length of this interval. This means that we know that at this time interval
the solution of the Navier-Stokes problem describes the behavior of a fluid that complies with
the law of conservation of energy.The question of whether or not this solution is strong outside
this time interval remains open.

2.3 Proof of the main result

At first we mention some estimates and lemmas which we apply in order to prove Theorem 1.
The following estimate is proved in [11, Estimate (2.1)]. If v ∈W1,3(Ω), v · n = 0 on ∂(Ω),
then

‖v‖3
9 ≤ c3

∫
Ω

|∇v|2|v|. (2.6)

Let v ∈W1,2
σ (Ω). Then there exists q ∈W1,2(Ω) such that

v|v| = Pσ(v|v|) +∇q. (2.7)

Applying operator div to 2.7 and using the fact that v · n ≡ 0 on ∂Ω we obtain

∆q = div (v|v|) in Ω
∂q

∂n
= 0 in ∂Ω (2.8)

Therefore , ∣∣∣∣D2q
∣∣∣∣

3/2
≤ c4

∣∣∣∣∇v|v| ∣∣∣∣
3/2
≤ c5

∣∣∣∣∇v|v|∣∣∣∣
2

∣∣∣∣v∣∣∣∣1/2
3
. (2.9)

The following inequalities are proved in [10, Lemma 2.] where assumption of convexity of Ω
has been applied. Let w ∈W2,2

σ, nc(Ω). Then∫
Ω

S ·Pσ(v|v|) ≡ −
∫

Ω

∆v ·Pσ(v|v|) ≥
∫

Ω

|∇v|2|v|+ 4

9

∫
Ω

∣∣∇|v|3/2∣∣2. (2.10)

The following lemma is proved in [14].

Lemma 2 Let c6 > 0, θ,ϑ and ς are real-valued, non-negative functions which are continuous
on [0, τ), θ ∈ C(0, τ), θ(0) = 0 and the inequality

θ′(t) + ϑ(t) ≤ c6θ(t)ϑ(t) + ς(t) (2.11)

holds on (0, τ). Put D =
∫ τ

0
ς(t) dt. If D < 1

4c6
then

sup
t∈(0,τ)

θ(t) ≤ 2D <
1

2c6

(2.12)

and ∫ τ

0

ϑ(t) dt ≤ 2D <
1

2c6

. (2.13)
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Integrating (2.1) and using (2.10) and embedding W1,2
σ (Ω) ↪→ L3(Ω) we prove the following

lemma.

Lemma 3 Let ϕ0 ∈W1,2
σ (Ω), ϕ be a solution of (2.1)–(2.4). Then the inequality

‖ϕ(T ′)‖3
3 +

∫ T ′

0

∫
Ω

|∇ϕ|2|ϕ| ≤ ‖ϕ0‖3
3 (2.14)

holds for every T ′, 0 < T ′ ≤ T .

Now we prove Theorem 1:

It is well known that if u0 ∈ W1,2
σ (Ω) then ϕ ∈ L2

(
0, T ′; W2,2

σ, nc(Ω)
)
. Multiplying (2.1) by

Pσ(ϕ|ϕ|), integrating it over Ω and (0, T ′) and using (2.10) we obtain (2.14) with u0 instead of
ϕ0. Let

ς = sup{ς ′; ς ′, such that u is a strong solution on (0, ς ′)}. (2.15)

Since u0 ∈ W1,2
σ (Ω) then ς > 0. This statement can be proven by analogy with [8, Theorem

6.1]. We prove that ς ≥ τ . Suppose by contradiction that ς < τ . It is sufficient to prove that

u ∈ C([0, ς]; W1,2
σ (Ω)). (2.16)

By (2.16) u(ς) ∈W1,2
σ (Ω). Consequently, there exists ς∗ > ς such that u is a strong solution

on (0, ς∗) and we obtain the contradiction with (2.15).

Let u = ϕ+ψ such that ψ is solution of the system

ψ′ −∆ψ + (ψ · ∇)ψ + (ϕ · ∇)ψ + (ψ · ∇)ϕ+ (ϕ · ∇)ϕ+∇P = 0, (2.17)
ψ(0) = 0 (2.18)

and ϕ is solution of the problem (2.1)–(2.4) with initial velocity u0. By (1.6) there exists
q ∈W1,3/2(Ω) such that

ψ|ψ| = Pσ(ψ|ψ|) +∇q. (2.19)

Multiplying (2.17) by Pσ(ψ|ψ|) on the time interval (0, ς), integrating it over Ω and using (2.7),
(2.10), (2.19) and a well-known identity (see, e.g., [15, Lemma 3.2.1])((

(ψ · ∇)ψ , ψ|ψ|
))

=
((

(ϕ · ∇)ψ , ψ|ψ|
))

= 0

we obtain

1

3

d

dt

∣∣∣∣ψ∣∣∣∣
3
+
∣∣∣∣∇ψ|ψ|1/2∣∣∣∣2

2
+

4

9

∣∣∣∣∇|ψ|3/2∣∣∣∣2
2
≤∣∣(((ψ · ∇)ψ + (ϕ · ∇)ψ + (ψ · ∇)ϕ+ (ϕ · ∇)ϕ , ψ|ψ|

))∣∣+∣∣(((ψ · ∇)ψ + (ϕ · ∇)ψ + (ψ · ∇)ϕ+ (ϕ · ∇)ϕ , ∇q
))∣∣ ≤∣∣(((ψ · ∇)ϕ , ψ|ψ|

))∣∣+
∣∣(((ϕ · ∇)ϕ , ψ|ψ|

))∣∣+
∣∣(((ψ · ∇)ψ , ∇q

))∣∣+∣∣(((ϕ · ∇)ϕ , ∇q
))∣∣+

∣∣(((ϕ · ∇)ψ , ∇q
))∣∣+

∣∣(((ψ · ∇)ϕ , ∇q
))∣∣ =

I1 + I2 + I3 + I4 + I5 + I6 (2.20)
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Integrating by parts and applying (2.6) and (2.9) we infer

I1 ≤ c
∣∣∣∣∇ψ|ψ|∣∣∣∣

3/2

∣∣∣∣ψ∣∣∣∣
6

∣∣∣∣ϕ∣∣∣∣
6
≤ c

∣∣∣∣∇ψ|ψ|∣∣∣∣
2

∣∣∣∣ψ∣∣∣∣1/2
3

∣∣∣∣ψ∣∣∣∣3/4
9

∣∣∣∣ψ∣∣∣∣1/4
3

∣∣∣∣ϕ∣∣∣∣3/4
9

∣∣∣∣ϕ∣∣∣∣1/4
3
≤

c
∣∣∣∣∇ψ|ψ|∣∣∣∣3/2

2

∣∣∣∣ψ∣∣∣∣3/4
3

∣∣∣∣ϕ∣∣∣∣3/4
9

∣∣∣∣ϕ∣∣∣∣1/4
3
≤ c7

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2

∣∣∣∣ψ∣∣∣∣3
3
+

1

2

∣∣∣∣∇ϕ|ϕ|∣∣∣∣2
2

∣∣∣∣u0

∣∣∣∣
3
(2.21)

I2 ≤ c
∣∣∣∣∇ψ|ψ|∣∣∣∣

3/2

∣∣∣∣ϕ∣∣∣∣2
6
≤ c

∣∣∣∣∇ψ|ψ|∣∣∣∣
2

∣∣∣∣ψ∣∣∣∣1/2
3

∣∣∣∣ϕ∣∣∣∣3/2
9

∣∣∣∣ϕ∣∣∣∣1/2
3
≤

1

8

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2
+c8

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2

∣∣∣∣ψ∣∣∣∣3
3
+

1

2

∣∣∣∣∇ϕ|ϕ|∣∣∣∣2
2

∣∣∣∣u0

∣∣∣∣
3

(2.22)

I3 ≤ c
∣∣∣∣D2q

∣∣∣∣
3/2

∣∣∣∣ψ∣∣∣∣2
6
≤ c

∣∣∣∣∇ψ|ψ|∣∣∣∣
3/2

∣∣∣∣ψ∣∣∣∣3/2
9

∣∣∣∣ψ∣∣∣∣1/2
3
≤

c
∣∣∣∣∇ψ|ψ|∣∣∣∣2

2

∣∣∣∣ψ∣∣∣∣
3
≤ 1

8

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2
+c9

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2

∣∣∣∣ψ∣∣∣∣3
3

(2.23)

I4 ≤ c
∣∣∣∣D2q

∣∣∣∣
3/2

∣∣∣∣ϕ∣∣∣∣2
6
≤ c

∣∣∣∣∇ψ|ψ|∣∣∣∣
3/2

∣∣∣∣ϕ∣∣∣∣3/2
9

∣∣∣∣ϕ∣∣∣∣1/2
3
≤

1

8

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2
+c10

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2

∣∣∣∣ψ∣∣∣∣3
3
+
∣∣∣∣∇ϕ|ϕ|∣∣∣∣2

2

∣∣∣∣u0

∣∣∣∣
3

(2.24)

I5 + I6 ≤ c
(
I3 + I4

)
≤ 1

8

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2
+c11

∣∣∣∣∇ψ|ψ|∣∣∣∣2
2

∣∣∣∣ψ∣∣∣∣3
3
+
∣∣∣∣∇ϕ|ϕ|∣∣∣∣2

2

∣∣∣∣u0

∣∣∣∣
3

(2.25)

Set c12 = c7 + c8 + c9 + c10 + c11. Using estimates (2.20)–(2.25) we obtain

d

dt

∣∣∣∣ψ∣∣∣∣3
3

+
∣∣∣∣∇ψ |ψ|1/2∣∣∣∣2

2
≤ 3 c12

∣∣∣∣∇ψ |ψ|1/2∣∣∣∣2
2

∣∣∣∣ψ∣∣∣∣3
3

+ 3
∣∣∣∣u0

∣∣∣∣
3

∣∣∣∣∇ϕ |ϕ|1/2∣∣∣∣2
2
.

Put θ(t) =
∣∣∣∣ψ(., t)

∣∣∣∣3
3
, ϑ(t) =

∣∣∣∣∇ψ(., t)|ψ|1/2
∣∣∣∣2

2
, ς(t) = 3

∣∣∣∣u0

∣∣∣∣
3

∣∣∣∣∇ϕ |ϕ|1/2∣∣∣∣2
2

and ε = 1
12c12

.
Let 0 < τ < T such that

‖u0‖3

∫ τ

0

∣∣∣∣∇ϕ |ϕ|1/2∣∣∣∣2
2
<

1

12c12

.

If τ ≤ ς the theorem is proved. Suppose by contradiction ς < τ . Since

3 ‖u0‖3

∫ ς

0

∣∣∣∣∇ϕ |ϕ|1/2∣∣∣∣2
2
<

1

4c12

.

we get by Lemma 2 and by (2.6)∫ ς

0

∣∣∣∣ψ∣∣∣∣3
9
≤ c3

∫ ς

0

∣∣∣∣∇ψ |ψ|1/2∣∣∣∣2
2
<

1

2c12

<∞.

The last inequalities, (2.6) and (2.14) imply thatu ∈ L3(0, ς; L9(Ω)). Then,u ∈ C([0, ς]; W1,2
σ (Ω)).

Since (2.16) holds we obtain the contradiction with (2.15). Consequently, τ ≤ ς and theorem is
proved.

ACKNOWLEDGEMENTS: The research was supported by the project SGS17/116/OHK1/2T/11.

645



References

[1] BEIRAO DA VEIGA, H., CRISPO, F.: Sharp inviscid limit results under Navier type
boundary condition. An Lp theory. J. Math. Fluid Mech., 12, 2010, 397–411.

[2] BELLOUT, H., NEUSTUPA, J., PENEL, P.: On viscosity–continuous solutions of the Eu-
ler and Navier–Stokes equations with a Navier–type boundary condition. Comptes Rendus
Math., 347, 2009, 1141–1146.

[3] BELLOUT, H., NEUSTUPA, J., PENEL, P.: On a ν–continuous family of strong solu-
tions to the Euler or Navier–Stokes equations with the Navier–type boundary condition.
Discr. and Cont. Dyn. Systems–A, 27, no. 4, 2010, 1353–1373.

[4] CHEN, G.Q., OSBORNE, D., QIAN, Z.: The Navier–Stokes equations with the kinematic
and vorticity boundary conditions on non–flat boundaries. Acta Mathematica Scientia, 29,
no. B(4), 2009, 919—948.

[5] FARWIG, R., SOHR, H., VARNHORN, V.: On optimal initial value conditions for local
strong solutions of the Navier–Stokes equations. Ann. Univ. Ferrara, 55, 2009, 89–110.

[6] FUJIWARA, D., MORIMOTO, H.: An Lr-theorem of the Helmholtz decomposition of
vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24, 1977, 685–700.

[7] GALDI, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations.
Vol. I: Linearized Steady Problems. Springer–Verlag, New York–Berlin–Heidelberg, 1994.

[8] GALDI, G.P.: An Introduction to the Navier–Stokes initial–boundary value prob-
lem.Fundamental Directions in Mathematical Fluid Mechanics, editors G. P. Galdi, J. Hey-
wood, R. Rannacher, series “Advances in Mathematical Fluid Mechanics”, Birkhauser–
Verlag, Basel 2000, 1–98.
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Kučera Petr, doc. RNDr., CSc.
Department of Mathematics
Faculty of Civil Engineering
Czech Technical University in Prague
Thákurova 7, 166 29 Prague, Czech Republic
E-mail: petr.kucera@cvut.cz

Píšová Jitka, Ing. Arch.
Department of Mathematics
Faculty of Civil Engineering
Czech Technical University in Prague
Thákurova 7, 166 29 Prague, Czech Republic
E-mail: marguete@seznam.cz

Vacková Petra, Mgr.
Department of Mathematics
Faculty of Civil Engineering
Czech Technical University in Prague
Thákurova 7, 166 29 Prague, Czech Republic
E-mail: petra.vackova@fsv.cvut.cz

647




