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Abstract. The constructed analytical model of elastic-stressed state of a floated 
gyroscope gimbal. Clarified the pattern of elastic displacement of the gyroscope 
gimbal under the action of the penetrating acoustic radiation. Analyzed the possibility 
of manifestation of local features. The obtained values of the coordinate functions of 
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1 Introduction 

Nowadays, a country’s borders are defended by intercontinental ballistic and space missiles of 
different classes and deployment types, nuclear submarines and strategic missile forces. The 
present-day launch vehicles (LV) are known to be able to deliver the means of destruction 
from the country’s continental territory to any part of the globe not only with a great accuracy 
but also within the shortest time allowed. 
Ballistic missiles (BM), while in flight, are controlled by inertial or radio inertial systems. The 
first-mentioned type should be considered the most reliable one it is only these systems which 
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offer the decisive advantage —self-containment. This feature makes it possible to implement 
a simultaneous launch of a large number of missiles, provides a sufficient degree of 
independence of the starting positions and, in addition, a high readiness and reliability of the 
on-alert means of tactical carrier-based aircraft (TPA), strategic bombers (SBA), the ship-to-
air missile systems (for example, class "Fort" with 64 С-300 missiles), which are deployed 
with cruisers that have gas turbine engines, missile launchers "Basalt" class with cruise 
missiles P-500 (superprecision shooting to a distance ( radius) of 500 km), as well as 
unmanned aircrafts (autonomous robots) having freedom of movement, the explosive 
ordnance disposal (EOD) robots (Mini-Andros) and, finally, remotely controlled vehicles. 
Robots are finding the ever widening applications for military intelligence purposes, demining 
of the water area, destruction of troops in a zone of military conflicts, and others. 

1.1 Diffraction of N-waves on the impedance surface of gimbal 

Analyzing the interaction of an N-wave and mechanical systems of inertial autonomous 
positioning, we will consider, to be more specific, a commercially available single-axis 
gyroscope with a liquid-static gimbal. Assuming that the oscillation generated in the gimbal is 
not transmitted to the mating surfaces, the consideration can be limited to merely the shell 
part, while for sake of completeness we will construct a three-dimensional model. The results 
obtained can be fully used, inter alia, for the analysis of dynamics of a two-axis gyro case. 

2 Analysis of the problem state 

It is the spectral density of the process of energy distribution, which provide the most 
complete picture of the sonic boom  [1, 2]. During the sound–barrier breaking, the level of N-
waves may exceed ten times the level of starting from open positions [3, 4]. 
Acoustic radiation that penetrates an aircraft generates numerous vibration modes, including 
resonance one, in the hardware of inertial sensors [5, 6]. Together, they produce disturbance 
torques of Euler inertial forces, which give rise to errors (or drift) of inertial sensor output 
signals [7-14]. 
The simplest while also the least labor-intensive methods to eliminate this phenomenon are 
the methods of design and technological solutions, i.e., passive methods [15-17]. 
We consider partial cases of the analytical model of the influence of geometry of the floating 
gyroscope gimbal on the gimbal coordinate functions. 
The object of the research is the process of elastic interaction of penetrating radiation and 
mechanical systems of on-board equipment. 
The purpose of the investigations is to build an accurate computational model of elastic 
interaction of acoustic emission and the mechanical system of floated gyroscope under 
hypersonic flight conditions. 
To this end, the following should be accomplished: 
1. Build an analytical model of the movable portion of the gyroscope gimbal.
2. Clarify the pattern of elastic displacement of the gyroscope gimbal under the action of the
penetrating acoustic radiation.
3. Analyze the possibility of manifestation of local features.
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3 Gimbal with arbitrary outline of the meridian line 

Boundary conditions of mathematical model under study are defined in the assumption that 
there is no transfer of flexural shell surface oscillation energy to the end surface and vice 
versa. This is observed in the hinged connection of these surfaces, which is assumed in the 
manuscript materials. In this case, simulation model of the shell and the flat end can be 
described as an infinite in length element – the shell and plates. 
Initial conditions. Suppose the shell belongs to the curvilinear orthogonal coordinates 

1 and 2 . They are regarded as lines of curvature with a radius 1R  and 2R .

Denote Lame parameters of the middle surface of the   shell by A1 and A2. Then, adding
inertial forces, we can use the shell equilibrium equations, which in expanded form are 
written as follows: 
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as in most cases quantities mi are of the hp order, so that by identifying qi and pi, the terms of 

order 
R

h
 are thus dropped out in comparison with unity; T1, T2 are normal forces, and S is

tangential force; M1, M2 are bending moments; H is torque;  is density of shell material; h

is shell thickness; iu is elastic displacement of points of  surface towards the coordinate i .
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In the form presented, equations (1) are inconvenient to use. Therefore, a series of 
transformations shall be done over them, after which they should be written in a form that is 
acceptable for integration. 

In dimensionless form, the differential equations of a shell with an arbitrary outline of the 
meridian line are written as [18] 
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where zU , U , W  are the elastic displacements of the shell surface along the generatrix,

along the parallel, and in the transverse plane; h  is the shell thickness;   is the density of the

material; E  is the Young modulus;   is the Poisson ratio;    0R f f const    is the

radius at the edges;   is the shell length;  r f z  is the distance from the axis of rotation to

the point M;  f z  is the rotation curve (meridian line);
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;   28 1     ; 2 1 ;   is the ascent of the

meridian line; provided that 0  , of course, we will have 0   and 0 ; 0  is the 

natural frequency. 
Equations (2) provide an opportunity to further carry out a comparative analysis of the four 
types of float-shell gimbal: with an arbitrary outline of the meridian line; convex (Figure 1, 
a.); concave or catenoid, from Lat. catena (Fig. 1, b), and (iv) circular cylinder (Fig. 1, c). In 

all the cases, the curve  f z  that generates the shell is assumed to be symmetrical relative to

the line СМ. 
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а) b) c) 

Fig. 1. Float shell of special form: a) a convex shell of rotation; 
b) a concave shell; c) a circular cylinder 

The coordinate systems 1 1 1C z r  and Ozr  are related by the analytical expressions 
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1

2
z z   . 

In the coordinate system 1 1 1C z r  the meridian line is given by 

 1 1r f z  , 

and the "+" and "–" signs refer to the schemes shown in Fig. 1, a and Fig. 1, b, respectively. 

Specify the class of the curves  1 1f z  for the implementation of the required shell. First of 

all, the following conditions must be necessarily met: 
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It follows from equations (1), (2), and (3) that the elastic displacement of gimbal surface in all 
three directions, influence each other to a certain extent. The degree of this influence will be 
determined later on. 
For the convenience of integration we should turn to dimensionless coefficients. 
Considering that 
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So, we introduce the following notation: 
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In order to simplify further discussion, we omit the overbar. Neglecting the small terms, the 
equation of the float shell gimbal with an arbitrary outline of the meridian line can be finally 
written as: 
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4. Conclusions

The constructed analytical model of elastic-stressed state of a floated gyroscope gimbal 
provides the following: 
Conduct a qualitative and quantitative analyses of the elastic displacements of the shell surface of the 
float in three directions - along the meridian lines, along the perimeter of the frame, and in the radial 
direction. 
The constructed analytical model enables one not only to analyze the structure of the coordinate 
functions as a function of time and geometrical parameters of the surface, but also to solve the 
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optimization problem of the gyroscope gimbal for the minimum surface acoustic vibration generated 
in the material. 
By determining the value of sound transmission in the shell can clarify the causes and development of 
technological risks hypersonic aircraft in time, in particular the manifestation of the effect of "acoustic 
transparency" of the object as a result of the wave match. 
The obtained values of the coordinate functions allow one to find the values  of Euler inertial forces 
acting on the surface float under flight conditions, determine the value of additional errors of floated 
gyroscope to determine the magnitude of errors due to direct action of moments of couple of 
Euler inertial forces in accordance with the Rezal theorem, when velocity of vector end of 
gyroscope's angular moment acquires velocity directed in the same way as the vector of 
perturbing moment of couple of Euler inertial forces and movable part of the device would 
rotate relative to the output axis as long as there is parallelism between them. Additional error 
of a gyroscope, besides the mentioned one, would contain one more component, which is 
caused by the indirect action of perturbing moments of Euler inertia forces, more precisely, 

Coriolis inertia forces due to elastic displacement velocities of float surface ( , ,zU U W

  
) on 

the aircraft body rotating relative to the cross axes of gyroscope suspension ( , ,y x z   ). This 

action is carried out through gyroscopic moments. 
Numerical values of additional gyro errors in the operating conditions can thus be determined, 
as said above, on the basis of the known kinematics of aircraft body in the form of three 
angular velocities with respect to cross axes of the float and three velocities 

     , ,zU t U t W t

  
 of elastic deformation (surface coordinate functions),

(      , ,zU t U t W t ) of float surface under the influence of sound waves. 

The obtained values of the coordinate functions of the floated gyroscope gimbal provide the possibility 
of manifestation, in the operating conditions, of the effect of selectivity of the angular motion of an 
aircraft, components of acoustic vibration of its surface in the form of the formation of a systematic 
measurement error. 
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