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Abstract. The contribution is focused on a kernel estimation of conditional density. Kernel 
smoothing is still popular non-parametric method, in theory as well as in practice. The 
Priestley-Chao estimator of conditional density is introduced and the statistical properties 
of the estimator are given. The smoothing parameters called bandwidths play a significant 
role in kernel smoothing. This is the reason for suggesting the methods for their estimation. 
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1 Introduction
A conditional density provides a comprehensive information about the data set. It can be regarded
as a generalization of regression: while regression models only the conditional expectation, condi-
tional density models also an uncertainty. Thus, the conditional density estimator provides except
the estimation of the distribution in fixed points of the independent variable also the estimation of a
regression function.

The estimators of the conditional density depend on the smoothing parameters called bandwidths.
The bandwidths control the smoothness in the both directions - in the direction of the independent
and dependent variable. This is the reason why so much importance is given to their detection. The
optimal values of the smoothing parameters generally depend on the true marginal and conditional
density, that is why they can be used only for the simulated data. In the case of the real data sets, their
values need to be estimated by any data-driven method, there are several methods for bandwidths
selection in the literature.

Some methods proceed from the methods suggested for kernel density estimation or kernel regression,
because the conditional density estimator is a combination of the density estimator and the estimator
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of a regression function. Thus, the bandwidths can be estimated separately - at first, by methods used
for the bandwidth estimation of kernel density, for example the cross-validation method ([4]), the
reference rule method ([17], [18]) or the maximum smoothing principle ([20], [19]) could be used.
Further, the methods used in kernel regression can be applied for the estimation of the smoothing
parameter hx, for example the cross-validation method ([5]) or the method of penalizing functions
(see [15], [10]).

The other methods for bandwidth selection are usually a generalization of the methods used in kernel
density estimation and/or kernel regression. The most popular method is the cross-validation method,
introduced by [3], which is based on a minimization of the global measure of the quality of the esti-
mate. An iterative method is based on the minimization of the proper relation between the Asymptotic
Integrated Square Bias (AISB) and Asymptotic Integrated Variance (AIV). The method is described
in [12] and it is inspired by the iterative method for kernel density estimations (see [6] and [7]) and
for kernel regression ([9]).

The expressions for the bandwidths estimations are given by a reference rule method, which assume
uniform or normal marginal density and normal conditional density with linear mean and linear vari-
ance. This method was proposed by Bashtannyk and Hyndman in [1]. Further, a bootstrap method
(see [1], [3]) and a method of penalizing functions (for detailed information see [1]) could be men-
tioned.

All the mentioned methods were derived for the widest used estimator of conditional density - for the
Nadaraya-Watson estimator. In this contribution, the Priestley-Chao estimator of conditional density
is focused on, the proposed methods - the cross-validation methods and the leave-one-out maximum
log-likelihood method - will be derived for this estimator.

2 The Priestley-Chao estimator of conditional density and its statistical properties
In this section, the construction of the estimator is focused on and the statistical properties of the
estimator are given. As the most of the methods for bandwidth detection is based on the minimization
of a global measure of the quality of the estimator, the derivation of the statistical properties is very
important.

In kernel smoothing generally, the elemental building block is the kernel function.

Definition 2.1 [21] Let K be a real valued function satisfying:

1. K ∈ Lip[−1, 1], i.e. |K(x)−K(y)| ≤ L|x− y|, ∀x, y ∈ [−1, 1], L > 0,

2. supp(K) = [−1, 1],

3. moment conditions:∫ 1

−1
K(x) dx = 1,

∫ 1

−1
xK(x) dx = 0,

∫ 1

−1
x2K(x) dx = β2(K) 6= 0.

Such a function K is called a kernel of order 2.

There are several examples of the kernel function - the Epanechnikov kernel, the uniform, the quartic,
the triangular kernel, etc. Probably the best known kernel function is the Gaussian kernel, represented
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by the density of the random variable with standardized normal distribution. The disadvantage of this
kernel is in its unconstrained support. On the other hand, this kernel is used in practice very often,
especially because of its simple manipulation and computational aspect.

The estimation of conditional density with one independent variable is focused on, this approach can
be generalized for multidimensional independent vector. In the most cases, the independent variable
is considered to be a random variable X with a marginal density g(x). Then, we talk about a model
with random design.

Let (X, Y ) be a random vector and (X1, Y1), (X2, Y2), . . . , (Xn, Yn) its observations. The kernel
estimation of the distribution of a random variable Y given by a random variable X characterized by
a fixed point x is generally given by the expression

f̂ (y|x) =
n∑

i=1

wi(x)Khy (y − Yi) ,

where wi(x) is a weight function at the point x. In kernel conditional density estimates, there are
several types of the estimates corresponding to the proper weight function.

Probably the widest used and best known estimator is the Nadaraya-Watson estimator of conditional
density ( [16]). Its name comes from the kernel estimator of the regression function - the Nadaraya-
Watson estimator - due to the similarity between the weight functions of both estimators. The weight
function takes the form

wNW
i (x) =

Khx (x−Xi)
n∑

i=1

Khx (x−Xi)
.

The local linear estimator is another widely used estimator. The estimator is suggested in [2], its
weight function of the estimator is expressed as

wLL
i (x) =

Khx (x−Xi) (ŝ2(x)− (x−Xi) ŝ1(x))

ŝ0(x)ŝ2(x)− ŝ21(x)
,

ŝr(x) = 1
n

n∑
i=1

(x−Xi)
rKhx (x−Xi) is the auxiliary function. The local linear estimator is more

difficult, especially as statistical properties and the methods for bandwidths selection are concerned.
On the other hand, the estimator is distinguished by better bias property and better boundary effects.

These two estimators mostly suppose a non-uniform distributed random design variable X . In prac-
tice, there are many situations when the conditional distribution has to be estimated, but the condi-
tioning variable X is made by equally spaced values of X . Analysis of time series can be such an
example in which the variable X is comprised by the time occasions. This is the reason for proposing
a new type of estimator - the Priestley-Chao estimator of conditional density.

The Priestley-Chao estimator was originally suggested for the kernel estimation of a regression func-
tion. The original paper by Priestley and Chao ([14]) is followed and the generalization of the original
estimator to the estimator of conditional density is made.

Suppose a fixed design, i.e. suppose the equally spaced design variable X with fixed values xi, i =
1, 2, . . . , n and δ = xi+1 − xi. Although the fixed design in the form xi = i

n
, i = 1, 2, . . . , n

is usually assumed, the design points can not be restricted only on the interval [0, 1] but generally on
[a, b] , a < b.
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The Priestley-Chao estimator of conditional density is defined as

f̂PC (y|x) = δ
n∑

i=1

Khx (x− xi)Khy (y − Yi) . (1)

The similarity of the Priestley-Chao estimator of conditional density with the Priestley-Chao estimator
of regression function is following. The conditional expectation of the estimator (1), denoted by
m̂PC(x), takes the form

m̂PC(x) = δ

n∑
i=1

Khx (x− xi)Yi, (2)

the estimator (2) is exactly the Priestley-Chao estimator of regression function, introduced in [14].

Now, the statistical properties of the estimator (1) are focused on.

Theorem 2.1 [11] Let x be a fixed design, Y a random variable with conditional density f (y|x)
being at least twice continuously differentiable, and K be a kernel function satisfying Definition 2.1.
For hx → 0, hy → 0 and nhxhy → ∞ as n → ∞, asymptotic bias (AB) and asymptotic variance
(AV) of the Priestley-Chao estimator are given by the expressions

AB
{
f̂PC (y|x)

}
=

1

2
h2xβ2(K)

∂2f(y|x)

∂x2
+

1

2
h2yβ2(K)

∂2f(y|x)

∂y2
, (3)

AV
{
f̂PC (y|x)

}
=

δ

hxhy
R2(K)f(y|x), (4)

where R(K) =
∫
K2(u) du.

Sketch of the proof. At first, the property

E
{
f̂PC (y|x)

}
= nδE

{
Khx (x− xi)Khy (y − Yi)

}
along with the symmetry of the kernel function, the Taylor expansion of the conditional density and
O-notation are used for deriving the expression (3).

A well known law of the total variance is the fundamental idea for deriving (4). Let U and V be a
random variables, then variance of V is stated by

var {V } = E
{

varV |U {V |U}
}

+ var
{

EV |U {V |U}
}

.

Thus, the variance of i-th term of the estimator (1) is derived. Finally, using the stochastically inde-
pendence of all the terms in (1), the final variance is expressed as the sum of the variances.

The complete proof can be found in [11]. �

For assessing the local measure of the quality of the estimator (1) at the point [x, y], the Asymptotic
Mean Square Error (AMSE) should be used. AMSE is defined as a sum of the the Asymptotic
Variance and the Asymptotic Square Bias by the expression

AMSE
{
f̂PC (y|x)

}
=

δ

hxhy
R2(K)f(y|x) +

(
1

2
h2xβ2(K)

∂2f(y|x)

∂x2
+

1

2
h2yβ2(K)

∂2f(y|x)

∂y2

)2

.
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As it was said earlier, the values of the smoothing parameters play a very important role in kernel
smoothing. A lot of methods are based on a minimization of the global measure of the quality of the
estimate, that is why this characteristics is needed. The global quality of the estimator (1) is given by
the Asymptotic Mean Integrated Square Error (AMISE) in the form

AMISE
{
f̂PC (·|·)

}
=

δ

hxhy
c1 + c2h

4
x + c3h

4
y + c4h

2
xh

2
y, (5)

where c1, c2, c3 and c4 are constants defined below by the integrals over the ranges of x and Y :

c1 =

∫
R2(K) dx,

c2 =
1

4
β2
2(K)

∫∫ (
∂2f(y|x)

∂x2

)2

dx dy,

c3 =
1

4
β2
2(K)

∫∫ (
∂2f(y|x)

∂y2

)2

dx dy,

c4 =
1

2
β2
2(K)

∫∫
∂2f(y|x)

∂x2
∂2f(y|x)

∂y2
dx dy.

3 Methods for bandwidths detection
The smoothing parameters influence the final estimation of conditional density significantly. While
choosing too great values of the bandwidths, the estimate will tend to oversmooth, on the other hand,
the estimate will be undersmoothed in the choice of the small values. Our aim is to estimate the
proper values of the smoothing parameters to get a satisfactory estimate.

As the values of the smoothing parameters depend on the unknown conditional density, their optimal
values of them can be computed only in the case of the simulated data. While having the real data
set, a data-driven method has to be used for the bandwidths detection.

At first, the attention is paid to the optimal values of the smoothing parameters. Further, the cross-
validation method and the leave-one-out maximum log-likelihood method are described.

3.1 The optimal values of the smoothing parameters

The optimal values of the smoothing parameters can be used in the cases when the true conditional
density is known. Their knowledge is used especially while implementing new methods for the
bandwidths estimations to determine the suitability of the method.

The optimal values of the bandwidths are such values which minimize a global measure of the quality
of the estimator. They are derived by differentiating AMISE with respect to both smoothing parame-
ters, and by solving the system of two non-linear equations given by setting the derivatives to zero.

The optimal values of the smoothing parameters, denoted by h∗x and h∗y, are given by

h∗x = δ1/6c
1/6
1

(
4

(
c52
c3

)1/4

+ 2c4

(
c2
c3

)3/4
)−1/6

h∗y =

(
c2
c3

)1/4

h∗x.
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3.2 The cross-validation method

The cross-validation method is a standard procedure widely used for estimating the smoothing pa-
rameters, not only in the kernel estimates of conditional density, but in kernel smoothing generally.

The main idea of the method is based on a minimization of the cross-validation function (6). The
cross-validation function is associated with the global quality of the estimator - ISE (the Integrated
Square Error) in this case. In this contribution, the leave-one-out cross-validation method is con-
cerned, i.e. we use the estimation at the points (xi, Yi) using the points {(xj, Yj) , j 6= i}.

The leave-one-out cross-validation function is given in the form

CV (hx, hy) = δ2
∑
i

∑
j 6=i

hxhyKhx

√
2 (xi − xj)Khy

√
2 (Yi − Yj)− 2δ

∑
i

f̂PC (Yi|xi) . (6)

The values of the smoothing parameters using the leave-one-out cross-validation method are given by(
hCV
x , hCV

y

)
= arg min

(hx,hy)

CV (hx, hy) .

3.3 The leave-one-out log-likelihood method

The maximum likelihood method is a standard statistical procedure for selecting unknown param-
eters. In general, having an underlying density is supposed. In this case, the underlying unknown
conditional density is substituted by the Priestley-Chao estimator (1), represented by given observa-
tions and unknown bandwidths.

This approach was proposed by Leiva-Murillo and Artes-Rodríguez for kernel density estimations
(see the paper [13]). In this paper, their idea is followed and extended to conditional density estima-
tions.

Assume the objective function

L (hx, hy|x,Y ) =
n∏

j=1

f̂PC (Yj|xj) (7)

with the independent and identically distributed observations (xi, Yi) , i = 1, 2, . . . , n considered as
the fixed parameters, and the smoothing parameters hx, hy as the unknown parameters.

In the case that all n observation is considered, the maximizing problem (7) has a trivial degenerate
solution. In (7), if i = j, then

Khx (xj − xi) = Khx (0) and Khx (xj − xi) = Khx (0) .

Letting hx → 0 and hy → 0, then L → ∞, i.e. the objective function becomes unbounded and
does not have a finite maximum. This is an undesirable property because of estimating the values
of bandwidths tending to zero, thus the final estimate is undersmoothed, usually with abundance of
information and high variability. This is a motivation for implementation of a modification of the
classical maximum-likelihood approach.

The modification of the classical maximum likelihood approach lies in the leaving one observation
out - here is the name of the method, the leave-one-out maximum likelihood. Thus, the modified
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likelihood function is expressed by

L∗ (hx, hy|x,Y ) =
n∏

j=1
j 6=i

f̂PC (Yj|xj) . (8)

As maximizing (8) is equivalent to maximizing the functional

`∗ (hx, hy|x,Y ) = ln
n∏

j=1
j 6=i

f̂PC (Yj|xj) =
n∑

j=1
j 6=i

ln f̂PC (Yj|xj) , (9)

the maximizing problem (9) will be used rather than (8), especially due to the computational aspects
and computational time.

The estimations of the smoothing parameters are given by(
ĥ`
∗

x , ĥ
`∗

y

)
= arg max

(hx,hy)

`∗ (hx, hy|x,Y ) .

4 Simulation study
In this section, we conduct two simulation studies comparing the results given by the the cross-
validation method and by the proposed leave-one-out maximum log-likelihood method. The simula-
tion study involves two models defined as

M1 : Yi = exi + εi, xi =
i

n
, i = 1 . . . , 100, εi ∼ N(0, 0.52)

M2 : Yi = sin
(
3πx2i

)
+ εi, xi =

i

n
, i = 1 . . . , 100, εi ∼ N(1, 1)

At first, one hundred observations are generated from each model to apply the Priestley-Chao esti-
mator for conditional density detection. For both simulation studies, an exactly given grid of 100
times 100 points is considered to construct an estimation and to measure the error term. The x grid is
formed by the observations xi, the y grid is formed by the exact equidistant points at the range of Y
values.

The methods for bandwidth detection are performed from several points of view, the accuracy of the
estimates of the smoothing parameters to the optimal bandwidths is assessed as well as the measure
of the quality estimation is focused on. The measure of the quality of the estimate is given by the
Integrated Square Error

ISE
{
f̂PC (y|x)

}
=

∫∫ {
f̂PC (y|x)− f (y|x)

}2

dx dy.

Due to computational aspect, its estimation is used:

ÎSE
{
f̂PC (y|x)

}
=

∆

n

N∑
j=1

n∑
i=1

(
f̂PC (yj|xi)− f (yj|xi)

)2
,

where y = (yi, . . . , yN) is a vector of equally spaced values over the sample space of Y and ∆ is the
distance between two consecutive values of y.
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The observations were generated two hundred times in total. The values of the smoothing parameters,
the ISE estimation and the computational time were received from every repetition of the simulation.
The results of the estimates using the proposed methods are compared with the theoretical values and
they are presented by boxplots.

The estimations of the smoothing parameters for the model M1 are displayed in Fig. 1. The CV
method gives more stable results than the LOO-MLln method in the estimation of hx, on the other
hand the median is slightly closer to the optimal value h∗x (vertical line) while the LOO-MLln method
is used. Both methods tend to underestimate the parameter hx. As the smoothing parameter hy is
concerned, the CV method gives the underestimated values too, the median is located slightly above
the optimal value h∗y while using the LOO-MLln method.
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Fig. 1. The model M1: The estimations of the smoothing parameters (a) hx and
(b) hy for the CV and the LOO-MLln method. The red vertical line represents
the optimal value of the smoothing parameter (a) h∗x = 0.116, (b) h∗y = 0.224.

In the model M1, the estimations of the ISE values and the computational times are displayed in
Fig. 2. The ISE values given by the CV and the LOO-MLln method are compared with the ISE
values for the estimations constructed for the optimal values of the smoothing parameters (OPT).
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Fig. 2. The model M1: The estimations of (a) the natural logarithms of the ISE
values for the CV, the LOO-MLln method and OPT, (b) computational time.

The LOO-MLln method gives the estimations of the natural logarithms of the ISE error estimation
very close to the optimal ISE. Other advantage of the LOO-MLln method lies in its computational
difficulty - the computation using the LOO-MLln method takes about three quarters of the CV com-
putational time.
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Fig. 3. The model M2: The estimations of the smoothing parameters (a) hx and
(b) hy for the CV and the LOO-MLln methods in the model M2. The red
vertical line represents the optimal value of the smoothing parameter (a)

h∗x = 0.048, (b) h∗y = 0.56.

The estimations of the smoothing parameters for the model M2 are displayed in Fig. 3. Both methods
give slightly overestimated values of the smoothing parameter hx, the LOO-MLln estimations are
characterized by the higher variance with the median closer to the optimal value h∗x. The estimations
of hy are very undervalued for the CV method, the LOO-MLln gives estimations well reflecting the
optimal value h∗y.

The estimations of the ISE values and the computational times are displayed for the model M2 in
Fig. 4. As it can be seen in Fig. 4 (a), the LOO-MLln method gives the ISE estimations very close
to the optimal ISE values, while the estimations by the CV method are high and variable. The LOO-
MLln method is distinguished by the lower computational time.
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Fig. 4. The model M2: The estimations of (a) the ISE values for the CV, the
LOO-MLln method and OPT, (b) computational time.

5 Application to a temperature data
In this chapter, the comparison among the results given by the proposed leave-one-out maximum log-
likelihood method and the cross-validation method is focused on. Both methods are implemented on
a real data set provided by Berkeley Earth hosted in Kaggle [8].

The average annual temperatures in the Czech Republic during 1753 – 2012 are focused on. Early
data was collected by technicians using mercury thermometers, while in the 1980’s, there was a move
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to electronic thermometers that are said to have a cooling bias.

Our aim is to compare the estimations of the smoothing parameters by the cross-validation method
(CV) and the leave-one-out log-likelihood method (LOO-MLln) and their influence on the final es-
timate of conditional density. Also the computation time and the conditional mean estimation are in
our interest.

There are two variables in the data set:

• time factor (year), independent variable,

• the average annual temperature (measured in ◦ C), dependent variable.

The temperature data is illustrated in Fig. 5. The results of the methods are presented in Tab. 1 and in
Fig. 6 and Fig. 7.
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Fig. 5. A scatterplot of the temperature data.

At first, the estimates of the values of the smoothing parameters as well as the computational times
were focused on. The results are brought in Tab. 1. Here, the most significant advantage, the compu-
tational time, of the LOO-MLln method over the CV method can be seen. The computational time for
the LOO-MLln method is almost three times lower than the computational time for the CV method.

method ĥx ĥy computational time [s]
CV 8.45 0.00656 1021
LOO-MLln 10.2 0.34 285

Tab. 1. Estimates of the smoothing parameters and computational times for
methods used for estimating the temperature data.

Considering the estimates of the smoothing parameters, the differences among their estimations are
distinguished by a significant impact on the final visual presentation of the estimations of conditional
density. While the estimation using the CV method is characterized by the high-variable estimate
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Fig. 6. Contour plots for conditional density estimations for two compared
methods: (a) CV, (b) LOO-MLln.
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Fig. 7. Estimations of conditional expectation for two compared methods: 
(a) CV, (b) LOO-MLln.

with many peaks and unrecognizable distribution while time changing, the estimation using the LOO-
MLln method is not so much fluctuating, it is much smoother with evident distribution.

The estimates of the conditional mean are displayed for each method in Fig. 7. Despite the very dif-
ferent conditional distribution, not so distinctive differences among the estimated conditional means 
can be seen. The estimation using the CV method is characterized by lower smoothness.

6 Conclusion
A new type of the kernel estimator of conditional density - the Priestley-Chao estimator - was focused 
on. Despite the "classical" approach consisted in the random design assumption, the fixed design is 
assumed in the Priestley-Chao estimator. The statistical properties including the local and the global 
measures of the quality of the estimate are included. As the smoothing parameters play a significant 
role in kernel smoothing, the optimal values of the smoothing parameters are supplemented with the
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data-driven methods. The typical approach, the cross-validation method, is mentioned and a new
method, the leave-one-out log-likelihood method, is proposed.

The suggested methods are compared via a simulation study. Two simulation studies are conducted,
the emphasis is placed on the comparisons of the estimations of the smoothing parameters to the
theoretical values and of the estimations of ISE with its theoretical values. The computational time
for both methods is also included.

The results show the unequivocal advantage of the maximum likelihood approach. Except for the
lower computational time, the proposed method gives even more precise and stable estimations of the
smoothing parameters. The estimations of ISE approach to the ISE values computed for the estimates
with the optimal values of the smoothing parameters.

The CV and LOO-MLln are also applied to a real data set. The temperature data in the Czech Republic
during 1753 – 2012 is focused on. The results show the differences between the estimations of
conditional density. While the cross-validation method results in very undersmoothed estimates with
very complicatedly recognizable distribution, the LOO-MLln gives satisfactory results.

The results show that the proposed maximum log-likelihood method can be a reasonable and reliable
tool for bandwidth selection.
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