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Abstract. By modification of A. Norden methodic, we have found the formulae connecting 
main tensors of spaces with affine c onnection A n a nd Ā n, a dmitting m appings o nto each 
other. We introduce the notion of shortened mapping and its particular case a half-mapping. 
When we turn our attention to covariant derivatives under medium connection, the main 
equations are simplified to a notable degree.
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1 Introduction
The notion of a connection was introduced to differential geometry in works of Tullio Levi-Civita
(1917). Later H. Weyl (1920) invoked the spaces with affine connection while studying translation of
vectors.

This paper treats the mappings of spaces with affine connection. Morphisms (mappings) of general-
ized geometric spaces are a subject of an up-to-date research field in modern differential geometry.
There are three main directions of inquiry [1, 2, 3, 4]:

1. A study of general patterns of mappings.

2. Research on the problem whether a given generalized space admits a special mapping or not.

3. Search for a connecting mapping when a pair of spaces is given.

The scheme of investigation is as follows: study of mappings is reduced to a system of differential
equations; the system of differential equations is reduced to an algebraic system, which represents
conditions of integrability; these systems redefined by introduction of additional limitations, they are
simplified or integrated [5].
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A local solution of this problem is possible in general, meanwhile in practice it meets serious technical
difficulties.

The paper suggests the method for construction of a simplified system of differential equations in
covariant derivatives for research on mappings of spaces with affine connection.

2 Main results
A space with affine connection An of a given dimension n is a differential manifold with every curve
having an affine connection defined. Or in other words: for any point M and for any vector field in
the vicinity of this point, absolute differential of a vector belonging to this field, if calculated in the
point M for any curve passing through it, is a linear function of a vector of elementary translation
along the curve.

Authors treat spaces with affine connections An without torsion, as follows

Γhij(x) = Γhji(x). (1)

The space An belongs to class Cr (An ∈ Cr), if Γhij(x) ∈ Cr.

Here we treat two spaces with affine connection.

A one-to-one correspondence of points of spaces with affine connection An and Ān is called a map-
ping. Then in a system of coordinates common in respect to the mapping the following conditions
exist:

Γ̄hij(x)− Γhij(x) = P h
ij(x). (2)

here Γhij, Γ̄
h
ij — objects with affine connection of spaces An and Ān respectively. In the following

discussion the objects Ān will be denoted by a bar.

A system of curvilinear coordinates is called a system of coordinates common in respect to a mapping
if the coordinates of respective points coincide.

The tensor P h
ij(x) is called a tensor of deformation of connection at a given mapping.

If
P h
ij(x) /≡ 0, (3)

then the mapping is called nontrivial.

Let us mention that the deformation tensor is symmetrical in sense of covariant indexes. Or P h
ij = P h

ji

for torsion-free spaces with affine connection.

Theorem 1. When the space with affine connection An is mapped onto the space with affine connec-
tion Ān, Riemannian tensors of spacesAn and Ān are connected by an equation in a single coordinate
system

R̄h
. ijk = Rh

. ijk +
1

2
(∇kP

h
ji − ∇jP

h
ki + ∇̄kP

h
ji − ∇̄jP

h
ki). (4)

HereRh
ijk — Riemannian tensor and ∇— a symbol of covariant derivative.

While for purposes of definition of mapping, we introduce a one-to-one correspondence, in fact we
order the given pair of spaces with affine connection An and Ān by ascribing a sign for a deformation
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tensor. Any pair of spacesAn and Ān has a correspondence defined by objects of connections of these
spaces. On the other hand, object of connection An and deformation tensor characterize connection
of space Ān. It permits to introduce a mapping that we propose to name shortened in relation to a
given mapping. Further we will call it a shortened mapping.

Object
λ

Γh
ij is constructed following a rule

λ

Γh
ij = Γhij(x) +

λ

1 + λ
P h
ij(x), (5)

λ = const > 0.

It characterizes the connection of a given space with affine connection
λ

An [6].

A mapping of space with affine connection An onto a space with affine connection
λ

An is called a
shortened mapping, when such an equation is true in a common system of coordinates (5).

Theorem 2. When spaces An and Ān admit a mapping that corresponds to deformation tensor
P h
ij , then there exists a shortened mapping, in respect to which Riemannian tensor corresponds to

limitations:

λ

R h
. ijk = Rh

. ijk +
λ

1 + λ
(∇kP

h
ji − ∇jP

h
ki+

λ

∇kP h
ji−

λ

∇jP h
ki). (6)

When λ = 1 then such a mapping is called shortened in half or a half-mapping and the connection is
called medium.

Theorem 3. When spaces An and Ān admit the mapping that corresponds to the deformation tensor
P h
ij , then there exists the half-mapping with Riemannian tensor that satisfies conditions:

R̄h
. ijk = Rh

. ijk+
c

∇kP h
ji−

c

∇jP h
ki. (7)

Contracting the latter with respect to indices h and i, we get

R̄α
αjk = Rα

αjk+
c

∇kτj−
c

∇jτk, (8)

where τi
def
=Pα

iα = Γ̄αiα − Γαiα.

A manifold An with a symmetric affine connection is called equiaffine manifold if the Ricci tensor is
symmetric.

Since in the case of symmetric connection

Rij −Rji = Rα
αji. (9)

A manifold An with a symmetric affine connection is an equiaffine manifold if and only if in any
coordinate system (xi) there exists a function f(x) satisfying

Γαiα = ∂if(x). (10)
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When the spaces are equiaffine and the Ricci tensors are symmetrical then we get the equation:

c

∇kτj−
c

∇jτk = 0. (11)

Let us formulate the theorem:

Theorem 4.

If the Weyl tensor is preserved in the course of the mapping of spaces with affine connection, the
deformation tensor holds the conditions:

c

∇kP h
ji−

c

∇jP h
ki =

=
1

n− 1

(
δhk (

c

∇αPα
ji−

c

∇jPα
αi)− δhj (

c

∇αPα
ki−

c

∇kPα
αi)

)
−

− 1

n+ 1
(δhi (

c

∇jPα
αk−

c

∇kPα
αj)− (12)

− 1

n− 1
(δhk (

c

∇jPα
αi−

c

∇iPα
αj)− δhj (

c

∇kPα
αi−

c

∇iPα
αk)))

and for equiaffine spaces

c

∇kP h
ji−

c

∇jP h
ki =

=
1

n− 1

(
δhk (

c

∇αPα
ji−

c

∇jPα
αi)− δhj (

c

∇αPα
ki−

c

∇kPα
αi)

)
. (13)

For further investigation the methods developed by [7] and [8] can be applied.

3 Proofs for theorems
Theorem 1. Proof

In a case of tensor field S of type ( pq ) covariant derivative of connection An (it will be designated by
∇) is defined in any coordinate system x1, x2, . . . , xn as follows:

∇kS
i1i2...ip
j1j2...jq

(x) = ∂kS
i1i2...ip
j1j2...jq

(x) + Γi1kα(x)S
αi2...ip
j1j2...jq

(x) + . . .+

+ Γ
ip
kα(x)S

i1i2...ip−1α
j1j2...jq

(x)− Γβkj1(x)S
i1i2...ip
βj2...jq

(x)− . . .− (14)

− Γβkjq(x)S
i1i2...ip
j1j2...jq−1β

(x),

(i1, . . . , ip; j1, . . . jq; k = 1, 2, . . . , n).

For the space Ān and covariant derivative ∇̄ in it the equation is true in a common coordinate system
:

∇̄kS
i1i2...ip
j1j2...jq

(x) = ∂kS
i1i2...ip
j1j2...jq

(x) + Γ̄i1kα(x)S
αi2...ip
j1j2...jq

(x) + . . .+

+ Γ̄
ip
kα(x)S

i1i2...ip−1α
j1j2...jq

(x)− Γ̄βkj1(x)S
i1i2...ip
βj2...jq

(x)− . . .− (15)

− Γ̄βkjq(x)S
i1i2...ip
j1j2...jq−1β

(x),

(i1, . . . , ip; j1, . . . jq; k = 1, 2, . . . , n).
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Subtracting from the latter (14) and taking into account (2) we will get

∇̄kS
i1i2...ip
j1j2...jq

(x)−∇kS
i1i2...ip
j1j2...jq

(x) = P i1
kα(x)S

αi2...ip
j1j2...jq

(x) + . . .+

+ P
ip
kα(x)S

i1i2...ip−1α
j1j2...jq

(x)− P β
kj1

(x)S
i1i2...ip
βj2...jq

(x)− . . .− (16)

− P β
kjq

(x)S
i1i2...ip
j1j2...jq−1β

(x),

(i1, . . . , ip; j1, . . . jq; k = 1, 2, . . . , n).

The latter is true for any tensor and for deformation tensor (16). It takes a shape as follows:

∇̄kP
h
ij(x)−∇kP

h
ij(x) = P h

kα(x)Pα
ij(x)− Pα

ki(x)P h
αj(x)− Pα

kj(x)P h
iα(x). (17)

Symmetrizing the latter we will get

∇̄kP
h
ij + ∇̄jP

h
ik −∇kP

h
ij −∇jP

h
ik = −2Pα

kjP
h
iα. (18)

Alternating —
∇̄kP

h
ij − ∇̄jP

h
ik −∇kP

h
ij +∇jP

h
ik = −2(P h

kαP
α
ij − Pα

kiP
h
αj). (19)

The law of change of curvature tensor that is defined as:

Rh
. ijk = ∂jΓ

h
ik + ΓαikΓ

h
jα − ∂kΓ

h
ij − ΓαijΓ

h
kα, (20)

in the course of the mapping of space An onto Ān can be written as follows:

R̄h
. ijk = Rh

. ijk +∇kP
h
ji − ∇jP

h
ki + P h

αkP
α
ji − P h

αjP
α
ki (21)

or taking into account (19),

R̄h
. ijk = Rh

. ijk +
1

2
(∇kP

h
ji − ∇jP

h
ki + ∇̄kP

h
ji − ∇̄jP

h
ki). (22)

Thus, the theorem is proved.

Theorem 2. Proof

From equation (5), taking into account (2), we will obtain

λ

Γh
ij =

Γhij + λΓ̄hij
1 + λ

. (23)

For the deformation tensor the latter permits to write down:

λ

∇kP h
ij(x)−∇kP

h
ij(x) =

=
λ2

(1 + λ)2
(P h

kα(x)Pα
ij(x)− Pα

ki(x)P h
αj(x)− Pα

kj(x)P h
iα(x)) (24)

and for Riemannian tensor — (6).

So the statement is proved.
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Theorem 3. Proof

The reliability of theorem can easily be checked applying the definition of a medium connection and
previous theorems.

Theorem 4. Proof

Weyl tensor W h
ijk is defined as follows

W h
ijk

def
=Rh

ijk −
1

n− 1

(
δhkRij − δhjRik

)
+

+
1

n+ 1

(
δhi R[jk] −

1

n− 1

(
δhkR[ji] − δhjR[ki]

))
. (25)

For equiaffine spaces the latter equation looks as follows

W h
ijk

def
= Rh

ijk −
1

n− 1
(δhkRij − δhjRik). (26)

In respect to the mapping Weyl tensors An and Ān are connected by

W̄ h
ijk=W

h
ijk+

c

∇kP h
ji−

c

∇jP h
ki −

− 1

n− 1

(
δhk (

c

∇αPα
ji−

c

∇jPα
αi)− δhj (

c

∇αPα
ki−

c

∇kPα
αi)

)
+

+
1

n+ 1
(δhi (

c

∇jPα
αk−

c

∇kPα
αj)− (27)

− 1

n− 1
(δhk (

c

∇jPα
αi−

c

∇iPα
αj)− δhj (

c

∇kPα
αi−

c

∇iPα
αk))),

or for equiaffine spaces

W̄ h
ijk=W

h
ijk+

c

∇kP h
ji−

c

∇jP h
ki −

− 1

n− 1

(
δhk (

c

∇αPα
ji−

c

∇jPα
αi)− δhj (

c

∇αPα
ki−

c

∇kPα
αi)

)
. (28)

Thus, the theorem is proved.
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