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1 Introduction 

Let 𝑄 ≥ 1, 𝑛 ≥ 3 be integers. In the Euclidean space 𝑅𝑚(𝑚 > 1 integer), we think of 𝑛

different points 𝑃𝑖 = 𝑥𝑗
(𝑖)
(𝑖 =  1, … , 𝑛;  𝑗 =  1, … ,𝑚). We search for the polynomials of real

variables 𝑡 of the highest 𝐾-th degree 

𝑃𝑗
(𝑖)(𝑡) =  ∑ 𝑎𝑗𝑘

(𝑖)𝐾
𝑘=0 𝑡𝑘 (1) 

for 𝑖 =  1, … , 𝑛 − 1 (the case of the opened interpolation curve), or for 𝑖 =  1, … , 𝑛 (the case 

of closed interpolation curve, where for the point 𝑃𝑛+1 = 𝑥𝑗
(𝑛+1)

, we understand the point 𝑃1 =

𝑥𝑗
(1)

), and the way that applies

𝑃𝑗
(𝑖)(−1) = 𝑥𝑗

(𝑖)
, 𝑃𝑗

(𝑖)(1) =   𝑥𝑗
(𝑖+1)

(2) 

and furthermore (𝑞 =  1, … , 𝑄) 

d𝑞

d𝑡𝑞
𝑃𝑗
(𝑖)(1) =  

d𝑞

d𝑡𝑞
𝑃𝑗
(𝑖+1)(−1) (3) 

for 𝑖 =  1, … , 𝑛 − 2 (the opened interpolation curve), or for 𝑖 =  1, … , 𝑛 (closed interpolation 

curve, where for the function 𝑃𝑗
(𝑛+1)(𝑡), we understand the function 𝑃𝑗

(1)(𝑡)).
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Conditions (2) guarantee, that the 𝑖-th segment of the curve parameterised by the function 

𝑃𝑗
(𝑖)(𝑡) (𝑗 =  1, … ,𝑚), goes through points 𝑃𝑖, 𝑃𝑖+1; based on conditions (3) the transition from 

the 𝑖-th segment to (𝑖 + 1)-st segment implements smoothly from 1st to 𝑄-th derivation. To be 

brief we add 

d𝑞

d𝑡𝑞
 𝑃𝑗
(𝑖)(−1) =  D𝑞𝑥𝑗

(𝑖)
,  
d𝑞

d𝑡𝑞
 𝑃𝑗
(𝑖)(1) =  D𝑞𝑥𝑗

(𝑖+1)
 .  (4) 

We will talk later about the way to define values D𝑞𝑥𝑗
(𝑖)
, D𝑞𝑥𝑗

(𝑖+1)
. 

By (2), (3) we have 2𝑄 + 2 conditions available, from their bases is each polynomial (1) of the 

highest degree 𝐾 =  2𝑄 + 1: 

𝑃𝑗
(𝑖)(𝑡) =  ∑ 𝑎𝑗𝑘

(𝑖)2𝑄+1
𝑘=0 𝑡𝑘 .    (5) 

For 𝑞-th derivation applies 

d𝑞

d𝑡𝑞
𝑃𝑗
(𝑖)(𝑡) = ∑ 𝑘(𝑘 − 1)… (𝑘 − 𝑞 + 1)𝑎𝑗𝑘

(𝑖)𝑡𝑘−𝑞 =2𝑄+1
𝑘=0   (6) 

     = ∑ 𝑞! (
𝑘
𝑞
) 𝑎𝑗𝑘

(𝑖)𝑡𝑘−𝑞2𝑄+1
𝑘=0  . 

After setting values 𝑡 =  −1,1 to (5), (6), we get (while taking into account (2), (4)) the 

following system of 2𝑄 + 2 linear equation for 2𝑄 + 2 undefined coefficients 𝑎𝑗𝑘
(𝑖)

: 

∑ (−1)𝑘𝑎𝑗𝑘
(𝑖) = 𝑥𝑗

(𝑖)2𝑄+1
𝑘=0  ,    (7) 

∑ (−1)𝑘−𝑞𝑞! (
𝑘
𝑞
) 𝑎𝑗𝑘

(𝑖) = D𝑞𝑥𝑗
(𝑖)2𝑄+1

𝑘=0  , 

(𝑞 =  1, … , 𝑄) . 

∑ 𝑎𝑗𝑘
(𝑖) = 𝑥𝑗

(𝑖+1)2𝑄+1
𝑘=0  , 

∑ 𝑞! (
𝑘
𝑞
) 𝑎𝑗𝑘

(𝑖) = D𝑞𝑥𝑗
(𝑖+1)2𝑄+1

𝑘=0  , 

(𝑞 =  1, … , 𝑄) . 

We implement matrices 

𝐴𝑖𝑗 = (𝑎𝑗0
(𝑖), 𝑎𝑗1

(𝑖), … , 𝑎𝑗,2𝑄+1
(𝑖) ) ,    (8) 

𝑋𝑖𝑗 = (𝑥𝑗
(𝑖), 𝑋𝑖𝑗

+, 𝑥𝑗
(𝑖+1)

, 𝑋𝑖+1,𝑗
+ ) ,    (9) 

where 

𝑋𝑖𝑗
+ = (D1𝑥𝑗

(𝑖), D2𝑥𝑗
(𝑖), … , D𝑄𝑥𝑗

(𝑖))    (10) 

𝑋𝑖+1,𝑗
+ = (D1𝑥𝑗

(𝑖+1), D2𝑥𝑗
(𝑖+1), … , D𝑄𝑥𝑗

(𝑖+1))   (11) 

and let 𝐴𝑄 be the system matrix (7). We call it the basic matrix of method 𝐿𝑄,𝑝. If 𝐴𝑄 is regular, 

then the solution of the system (7): 𝐴𝑄 ∙ 𝐴𝑖𝑗
𝑇 = 𝑋𝑖𝑗

𝑇 , equals to 
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𝐴𝑖𝑗
𝑇 = 𝐴𝑄

−1 ∙ 𝑋𝑖𝑗
𝑇  ,     (12) 

where 𝐴𝑖𝑗
𝑇 , 𝑋𝑖𝑗

𝑇  are transposed matrices to matrices (8), (9) and 𝐴𝑄
−1 is the inverse matrix of the 

matrix 𝐴𝑄. Due to (12), polynoms (5) are: 

𝑃𝑗
(𝑖)(𝑡) = (1, 𝑡, 𝑡2, … , 𝑡2𝑄+1) ∙ 𝐴𝑖𝑗

𝑇 =    (13) 

 = (1, 𝑡, 𝑡2, … , 𝑡2𝑄+1) ∙ (𝐴𝑄
−1 ∙ 𝑋𝑖𝑗

𝑇) . 

 

2 Grouping of Support Points 

 

Let’s start with the case of the opened interpolation curve 𝑃1𝑃2…𝑃𝑛. Let 𝑊 =  2𝑛 –  2 and to 

the final sequence of support points 𝑃1𝑃2…𝑃𝑛, we add these points to the right 

𝑃𝑛+1 = 𝑃𝑛−1, 𝑃𝑛+2 = 𝑃𝑛−2, … , 𝑃𝑊 = 𝑃2𝑛−𝑊 .  (14) 

For the given integer 𝑘, we determine the smallest non-negative remainder 𝑟 when dividing the 

number 𝑘 by the number 𝑊 and set 

𝑃𝑘 = {
𝑃𝑟   𝑓𝑜𝑟 𝑟 > 0 ,
𝑃𝑊 𝑓𝑜𝑟 𝑟 = 0 .

     (15) 

Therefore, we get the infinite sequence of points 

… , 𝑃−5, 𝑃−4, 𝑃−3, 𝑃−2, 𝑃−1, 𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, …   (16) 

For instance, for n = 5 we think of an opened interpolation curve 𝑃1𝑃2𝑃3𝑃4𝑃5. Set 𝑊 = 8 and 

to the sequence of points 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5 we add these points to the right 

𝑃6 = 𝑃4, 𝑃7 = 𝑃3, 𝑃8 = 𝑃2. For instance, for 𝑘 =  9 applies 9 =  1 ∙ 8 + 1, and therefore 

𝑃9 = 𝑃1, or for 𝑘 =  10 applies 10 =  1 ∙ 8 + 2, and therefore 𝑃10 = 𝑃2. 

Then 𝑃11 = 𝑃3, 𝑃12 = 𝑃4, 𝑃13 = 𝑃5, 𝑃1 = 𝑃6 = 𝑃4, 𝑃15 = 𝑃7 = 𝑃3. For 𝑘 =  0 applies 0 =  0 ∙
8 + 0, therefore 𝑃0 = 𝑃8 = 𝑃2, for 𝑘 =  −1 applies −1 =  (−1) ∙ 8 + 7, therefore 

𝑃−1 = 𝑃7 = 𝑃3. For instance, for 𝑘 =  −315 applies −315 =  (−40) ∙ 8 + 5, therefore 

𝑃−315 = 𝑃5. The sequence (16) will then be composed of points 

 

… , 𝑃−2 = 𝑃−4, 𝑃−1 = 𝑃3, 𝑃0 = 𝑃2,  𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6 = 𝑃4, 𝑃7 = 𝑃3, 𝑃8 = 𝑃2… (17) 

In case of the closed interpolation curve  𝑃1𝑃2…𝑃𝑛𝑃1, we will proceed as follows. Set 𝑊 = 𝑛. 

For the given integer 𝑘, we determine the smallest non-negative remainder 𝑟 when dividing the 

number 𝑘 by the number 𝑊, and set 

𝑃𝑘 = {
𝑃𝑟   𝑓𝑜𝑟 𝑟 > 0 ,
𝑃𝑊 𝑓𝑜𝑟 𝑟 = 0 .

     (18) 

Thus, once again, we get the infinite sequence of points (16). For instance, 𝑛 =  4 will be the 

closed interpolation curve  𝑃1𝑃2𝑃3𝑃4𝑃1. For 𝑘 =  5 applies 5 =  1 ∙ 4 + 1, therefore 𝑃5 = 𝑃1, 

then 𝑃6 = 𝑃2, 𝑃7 = 𝑃3, 𝑃8 = 𝑃4. Furthermore 𝑃0 = 𝑃4, 𝑃−1 = 𝑃3, 𝑃−2 = 𝑃2, 𝑃−3 = 𝑃1, 𝑃−4 = 𝑃4. 

For instance, for 𝑘 =  −1026 applies −1026 =  (−257) ∙ 4 + 2, therefore 𝑃−1026 = 𝑃2. The 

sequence (16) is then composed of points  

… , 𝑃4, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃1, 𝑃2, 𝑃3, 𝑃4, …    (19) 
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3 The Definition of Derivative Values of Parametric Functions 

 

We now define values from 1st to 𝑄-th derivation of function 𝑃𝑗
(𝑖)(𝑡) at points 𝑡 =  −1,1. For 

that purpose, we display on the plane 𝑡, 𝑥𝑗 points (2ℎ, 𝑥𝑗
(𝑖+ℎ)), where −𝑄 + 𝑝 ≤ ℎ ≤ 𝑄 − 𝑝, ℎ 

integer; with the given 𝑄 representing 𝑝 of any number fulfilling the inequality 

 0 ≤  𝑝 ≤  𝑄 −  1. The value 𝑥𝑗
(𝑖+ℎ)

, we understand as the 𝑗-th coordinate of the point 𝑃𝑖+ℎ in 

the sequence (16) while respecting the type of interpolation curve (opened or closed), see the 

figure 1. 

 

Fig. 1                                  

Through these points, with their quantity equalled to the number 2𝑄 − 2𝑝 + 1, the polynomial 

of degree 2𝑄 − 2𝑝 is then unambiguously determined 

𝑅𝑗
(𝑖)(𝑡) = ∑ 𝑏𝑗𝑘

(𝑖)𝑡𝑘2𝑄−2𝑝
𝑘=0  .     (20) 

And just by using the polynomial (20), we define the derivation D𝑞𝑥𝑗
(𝑖)

 with relation 

D𝑞𝑥𝑗
(𝑖)
=

d𝑞

d𝑡𝑞
𝑅𝑗
(𝑖)(0)     (21) 

(𝑞 =  1, … , 𝑄). 

Then we can easily find out that for 2𝑄 − 2𝑝 ≥ 𝑄, i.e. for 𝑄 ≥ 2𝑝, the following applies 

D𝑞𝑥𝑗
(𝑖)
= 𝑞! 𝑏𝑗𝑞

(𝑖)
     (22) 

(𝑞 =  1, … , 𝑄), 

for 2𝑄 − 2𝑝 < 𝑄, i.e. for 𝑄 < 2𝑝, the following applies 

D𝑞𝑥𝑗
(𝑖)
= 𝑞! 𝑏𝑗𝑞

(𝑖)
     (23) 

(𝑞 =  1, … , 2𝑄 − 2𝑝), 

and 
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D𝑞𝑥𝑗
(𝑖)
= 0      (24) 

(𝑞 =  2𝑄 − 2𝑝 + 1, … , 𝑄). 

 

3.1 Note 

 

The derivative values of parametric functions 𝑃𝑗
(𝑖)(𝑡) at points 𝑡 =  −1,1 is then equalled to 

the derivative values of the auxiliary polynomial (20) at the point zero. The meaning of the 

integer 𝑝 ∈< 0, 𝑄 − 1 > is that for making these derivations, we more or less need given 

support points; for 𝑝 =  0 the quantity is maximum (=  2𝑄 +  1), for 𝑝 = 𝑄 − 1 minimum 

(= 3). With the given 𝑄, the number 𝑝 affects the shape of the resulting interpolation curve. 

For instance, if 𝑄 =  3, 𝑝 =  2 then, according to (24), D3𝑥𝑗
(𝑖)
= 0. 

 

4 The Universal Matrix of Method LQ,p 

 

Because each coefficient of polynomial (20) is a linear combination of values 

𝑥𝑗
(𝑖−𝑄+𝑝), 𝑥𝑗

(𝑖−𝑄+𝑝+1), … , 𝑥𝑗
(𝑖+𝑄−𝑝)

, also every derivation D𝑞𝑥𝑗
(𝑖) (𝑞 = 1, … , 𝑄) consists of some 

linear combination of those values. Therefore, there also exists a numerical matrix 𝐵𝑄,𝑝 of type 

(𝑄, 2𝑄 − 2𝑝 + 1) that is (see (10)) 

𝑋𝑖𝑗
+ = (𝑥𝑗

(𝑖−𝑄+𝑝), 𝑥𝑗
(𝑖−𝑄+𝑝+1), … , 𝑥𝑗

(𝑖+𝑄−𝑝)) ∙ 𝐵𝑄,𝑝
𝑇 ,   (25) 

and similarly (see (11)),  

𝑋𝑖+1,𝑝
+ = (𝑥𝑗

(𝑖−𝑄+𝑝+1), 𝑥𝑗
(𝑖−𝑄+𝑝+2), … , 𝑥𝑗

(𝑖+𝑄−𝑝+1)).   (26) 

By continuing in a similar way, to the one described in a publication [4], we get a matrix (8), 

described in a following way: 

 

𝐴𝑖𝑗
𝑇 = 𝐶𝑄,𝑝 ∙

(

 
 
 

𝑥𝑗
(𝑖−𝑄+𝑝)

𝑥𝑗
(𝑖−𝑄+𝑝+1)

⋮
⋮

𝑥𝑗
(𝑖+𝑄−𝑝+1)

)

 
 
 

 , 

where 
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(27) 

𝐶𝑄,𝑝 = 𝐴𝑄
−1 ∙ 

𝑄-𝑝+1        𝑄-𝑝+2 

∙ 𝑄+2









































0

0

0100

0

0

0010

,

,













B

B

pQ

pQ

    

   

is the matrix of type (2𝑄 +  2, 2𝑄 −  2𝑝 +  2). We call it the universal matrix of method 𝐿𝑄,𝑝. 

The final form of interpolation polynomials is then 

𝑃𝑗
(𝑖)(𝑡) = (1, 𝑡, 𝑡2, … , 𝑡2𝑄+1) ∙ 𝐶𝑄,𝑝 ∙

(

 
 
 

𝑥𝑗
(𝑖−𝑄+𝑝)

𝑥𝑗
(𝑖−𝑄+𝑝+1)

⋮
⋮

𝑥𝑗
(𝑖+𝑄−𝑝+1)

)

 
 
 

 .  (28) 

 

5 The Calculatuion of Basic Matrix Elements of Method LQ,p 

 

If we mark elements of the matrix 𝐴𝑄 system of equation (7) with the symbol 𝑚𝑟𝑠, then 

𝐴𝑄 = (𝑚𝑟𝑠)1≤𝑟,𝑠≤2𝑄+2, the matrix 𝐴𝑄 is of the type (2𝑄 + 2,2𝑄 + 2). 

Applies 

                  𝑚𝑟𝑠 =      (29) 

=

{
 
 

 
 

(−1)𝑠−1

0
(−1)𝑠−1(𝑟 − 1)! (𝑠−1

𝑟−1
)

1
|𝑚𝑟−(𝑄+1),𝑠|

 

for 𝑟 = 1 and 1 ≤ 𝑠 ≤ 2𝑄 + 2
for 2 ≤ 𝑟 ≤ 𝑄 + 1 and 1 ≤ 𝑠 ≤ 𝑟 − 1
for 2 ≤ 𝑟 ≤ 𝑄 + 1 and 𝑟 ≤ 𝑠 ≤ 2𝑄 + 2
for 𝑟 = 𝑄 + 2 and 1 ≤ 𝑠 ≤ 2𝑄 + 2

for 𝑄 + 3 ≤ 𝑟 ≤ 2𝑄 + 2 and 1 ≤ 𝑠 ≤ 2𝑄 + 2

   . 

According to (32), we find out that e.g. the element 𝑚43 of the matrix 𝐴1 is equal to 

𝑚43 = |𝑚23| = (−1)11! (2
1
) = 2 , 

the element 𝑚33 = 1 and 
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𝑚24 = (−1)
21! (3

1
) = 3 . 

The whole matrix 𝐴1 is 

𝐴1 = 

























3210

1111

3210

1111

     (30) 

and the corresponding inverse matrix is 

𝐴1
−1 =

1

4
 





























1111

1010

1313

1212

.             (31) 

According to (29), we find out that e.g. the element 𝑚26 of the matrix 𝐴2 equals to 

𝑚26 = (−1)
41! (5

1
) = 5 , 

the element 𝑚32 = 0 and 

𝑚54 = |𝑚24| = |(−1)21! (3
1
)| = 3 . 

The whole matrix 𝐴2 is 

𝐴2 =

































20126200

543210

111111

20126200

543210

111111

    (32) 

and the corresponding inverse matrix is 

𝐴2
−1 =

1

16







































13333

110110

2101021010

260260

17151715

158158

 .    (33) 

According to (29), we find out that e.g. the element 𝑚37 of the matrix 𝐴3 equals to 

𝑚37 = (−1)
42! (6

2
) = 30 , 

the element 𝑚83 = 0 and 
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𝑚88 = |𝑚48| = |(−1)43! (7
3
)| = 210 . 

The whole matrix 𝐴3 is 

𝐴3 = 









































21012060246000

423020126200

76543210

11111111

21012060246000

423020126200

76543210

11111111

          (34) 

and the corresponding inverse matrix is 

𝐴3
−1 =

1

96

















































161515161515

13301330

32463633246363

315150315150

330105105330105105

321450321450

1125710511257105

193348193348

 .          (35) 

For interests, e.g. the element 𝑚16,15 of the matrix 𝐴9 which is the type (20,20), according to 

(29) equals 

𝑚16,15 = |𝑚6,15| = |(−1)
95! (14

5
)| = 240240 . 

We won’t show the whole matrix 𝐴9 and the corresponding inverse matrix 𝐴9
−1 either but they 

do exist. 

 

5.1 Example 

 

On the plane 𝑅2, we think of support points 𝑃1 = (1,1), 𝑃2 = (2,3), 𝑃3 = (5,−1), 𝑃4 =

(2,−3), 𝑃5 = (4,5). With the method 𝐿3,1, we create an opened interpolation curve 

𝑃1𝑃2𝑃3𝑃4𝑃5. The matrix system of equations (7) is 𝐴3 (which is the matrix (34)) with the 

according inverse matrix (35). For the purpose of getting the matrix 𝐵3,1 of the type (3,5) (see 

(25)), we add to the polynomial (see (20)) 

𝑅𝑗
(𝑖)(𝑡) =  ∑ 𝑏𝑗𝑘

(𝑖)
𝑡𝑘4

𝑘=0      (36) 

points (2ℎ, 𝑥𝑗
(𝑖+ℎ)

), −2 ≤ ℎ ≤ 2, ℎ integer. Polynomial coefficients (36) are calculated with a 

simple calculation 
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𝑏𝑗0
(𝑖)
= 𝑥𝑗

(𝑖)
 , 

𝑏𝑗1
(𝑖)
= (−𝑥𝑗

(𝑖+2)
+ 8𝑥𝑗

(𝑖+1)
− 8𝑥𝑗

(𝑖−1) + 𝑥𝑗
(𝑖−2))/24 , 

𝑏𝑗2
(𝑖)
= (−𝑥𝑗

(𝑖+2)
+ 16𝑥𝑗

(𝑖+1)
− 30𝑥𝑗

(𝑖) + 16𝑥𝑗
(𝑖−1) − 𝑥𝑗

(𝑖−2))/96 , 

𝑏𝑗3
(𝑖)
= (𝑥𝑗

(𝑖+2)
− 2𝑥𝑗

(𝑖+1) + 2𝑥𝑗
(𝑖−1) − 𝑥𝑗

(𝑖−2))/96 , 

𝑏𝑗4
(𝑖)
= (𝑥𝑗

(𝑖+2)
− 4𝑥𝑗

(𝑖+1) + 6𝑥𝑗
(𝑖) − 4𝑥𝑗

(𝑖−1) + 𝑥𝑗
(𝑖−2))/384 . 

According to (22) which is D1𝑥𝑗
(𝑖) = 𝑏𝑗1

(𝑖)
, D2𝑥𝑗

(𝑖) = 2𝑏𝑗2
(𝑖)
, D3𝑥𝑗

(𝑖) = 6𝑏𝑗3
(𝑖)

, so (see (25)) 

𝑋𝑖𝑗
+ = (D1𝑥𝑗

(𝑖), D2𝑥𝑗
(𝑖), D3𝑥𝑗

(𝑖)) =, 

= (𝑥𝑗
(𝑖−2)

, 𝑥𝑗
(𝑖−1)

, 𝑥𝑗
(𝑖)
, 𝑥𝑗
(𝑖+1)

, 𝑥𝑗
(𝑖+2)

) ∙ 𝐵3,1
𝑇  , 

where 

𝐵3,1 =
1

48






















36063

11630161

2160162

 .           (37) 

Using (35), (37), we get (see (27)) 

𝐶3,1 =              (38) 

=
1

1536















































7357070357

000000

3115531031015531

264462

5731766666631757

2015613613615620

331971194119419733

1815090090015018

 . 

With the symbol �̃�3,1, we mark the matrix which forms  from the matrix 𝐶3,1 (see (37)) by 

omitting the seventh row, composed of zeros. 

Proceed to the calculation of parametric polynomials first and second segment of the opened 

interpolation curve 𝑃1𝑃2𝑃3𝑃4𝑃5. According to (28) and (17), parametric equations of the first 

segment 𝑃1𝑃2: −1 ≤ 𝑡 ≤ 1 are: 

𝑥1 = 𝑃1
(1)(𝑡) =             (39) 

= (1, 𝑡, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡7) ∙ �̃�3,1 ∙ (5,2,1,2,5,2)
𝑇 = 

=
1

192
(222 + 63𝑡 + 68𝑡2 + 57𝑡3 − 2𝑡4 − 31𝑡5 + 7𝑡7) , 
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𝑥2 = 𝑃2
(1)(𝑡) =             (40) 

= (1, 𝑡, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡7) ∙ �̃�3,1 ∙ (−1,3,1,3, −1,−3)
𝑇 = 

=
1

768
(1614 + 1555𝑡 − 76𝑡2 − 1243𝑡3 − 2𝑡4 + 589𝑡5 − 133𝑡7) . 

(𝑃1
(1)(−1), 𝑃2

(1)(−1)) = (1,1) = 𝑃1, (𝑃1
(1)(1), 𝑃2

(1)(1)) = (2,3) = 𝑃2 is in accordance with 

the primary requirement. 

According to (28) and (17), parametric equations of the second segment 𝑃2𝑃3: −1 ≤ 𝑡 ≤ 1 are: 

𝑥1 = 𝑃1
(2)(𝑡) =             (41) 

= (1, 𝑡, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡7) ∙ �̃�3,1 ∙ (2,1,2,5,2,4)
𝑇 = 

=
1

1536
(5958 + 3451𝑡 − 604𝑡2 − 1795𝑡3 + 22𝑡4 + 837𝑡5 − 189𝑡7) , 

𝑥2 = 𝑃2
(2)(𝑡) = (1, 𝑡, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡7) ∙ 𝐶3,1 ∙ (3,1,3, −1,−3,5)

𝑇 = 

=
1

768
(1122 − 1961𝑡 − 372𝑡2 + 641𝑡3 + 18𝑡4 − 279𝑡5 + 63𝑡7) . 

(𝑃1
(2)(−1), 𝑃2

(2)(−1)) = (2,3) = 𝑃2, (𝑃1
(2)(1), 𝑃2

(2)(1)) = (5, −1) = 𝑃3 is in accordance with 

the primary requirement. 

Further applies 

d

d𝑡
𝑃1
(1)(1) =

d

d𝑡
𝑃1
(2)(−1) =

4

3
 , 

d2

d𝑡2
𝑃1
(1)(1) =

d2

d𝑡2
𝑃1
(2)(−1) =

2

3
 , 

d3

d𝑡3
𝑃1
(1)(1) =

d3

d𝑡3
𝑃1
(2)(−1) = −

1

2
 

and 

d

d𝑡
𝑃2
(1)(1) =

d

d𝑡
𝑃2
(2)(−1) = −

5

12
 , 

d2

d𝑡2
𝑃2
(1)(1) =

d2

d𝑡2
𝑃2
(2)(−1) = −

45

24
 , 

d3

d𝑡3
𝑃2
(1)(1) =

d3

d𝑡3
𝑃2
(2)(−1) = −

1

8
 , 

thus, the transition from the first segment to the second segment of the constructed interpolation 

curve runs smoothly from the 1st to the 3rd derivation. This fact is also in accordance with the 

primary requirement. 
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Fig. 2. The course of the opened interpolation curve 𝑃1𝑃2𝑃3𝑃4𝑃5. 

 

6 General Parameterisation of the Interpolation Curve 

 

We recall that each segment of an opened interpolation curve 𝑃1𝑃2…𝑃𝑛, or a closed 

interpolation curve 𝑃1𝑃2…𝑃𝑛𝑃1, is parameterised on the same interval < −1,1 >. On the 

numerical axis, we now choose points 𝑇1 < 𝑇2 < … < 𝑇𝑛 in case of the opened curve 

𝑃1𝑃2…𝑃𝑛 , or points 𝑇1 < 𝑇2 < … < 𝑇𝑛 < 𝑇𝑛+1 in case of the closed curve 𝑃1𝑃2…𝑃𝑛𝑃1, and 

the 𝑖-th interval 𝑡 ∈< 𝑇𝑖, 𝑇𝑖+1 > for 𝑖 = 1,… , 𝑛 − 1 in case of the opened interpolation curve, 

or for 𝑖 = 1, … , 𝑛 in case of the closed interpolation curve, we simply display it on the interval 

< −1,1 > according to the formula 

𝑡−𝐴𝑖

𝐵𝑖
 , where 𝐴𝑖 =

𝑇𝑖+𝑇𝑖+1

2
 , 𝐵𝑖 =

𝑇𝑖+1−𝑇𝑖

2
 .            (42) 

For 𝜆 ∈< 0,1 >, the point 𝑡 =  𝑇𝑖 + 𝜆(𝑇𝑖+1– 𝑇𝑖) from the interval < 𝑇𝑖, 𝑇𝑖+1 > displays on the 

number 2𝜆– 1. For instance, for 𝜆 = 0, the point 𝑇𝑖 displays on the number −1, for 𝜆 = 1, the 

point 𝑇𝑖+1 displays on the number 1, for 𝜆 =  ½, the centre of the interval  

< 𝑇𝑖, 𝑇𝑖+1 > displays at zero. 
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For 𝑗 = 1,… ,𝑚, let 

𝑃𝑗
(𝑖)(𝑡) = (1, 𝑡, 𝑡2, … , 𝑡2𝑄+1) ∙ 𝐶𝑄,𝑝 ∙

(

 
 
 

𝑥𝑗
(𝑖−𝑄+𝑝)

𝑥𝑗
(𝑖−𝑄+𝑝+1)

⋮
⋮

𝑥𝑗
(𝑖+𝑄−𝑝+1)

)

 
 
 

 , 

where 𝑡 ∈< −1,1 >, are parametric polynomials of the 𝑖-th segment of the constructed 

interpolation curve (see (28)). Then for these parametric functions on the interval  

𝑡 ∈< 𝑇𝑖, 𝑇𝑖+1 >  applies the expression 

𝑃𝑗
(𝑖)(𝑡) =              (43) 

= (1,
𝑡−𝐴𝑖

𝐵𝑖
, (
𝑡−𝐴𝑖

𝐵𝑖
)2, … , (

𝑡−𝐴𝑖

𝐵𝑖
)2𝑄+1) ∙ 𝐶𝑄,𝑝 ∙

(

 
 
 

𝑥𝑗
(𝑖−𝑄+𝑝)

𝑥𝑗
(𝑖−𝑄+𝑝+1)

⋮
⋮

𝑥𝑗
(𝑖+𝑄−𝑝+1)

)

 
 
 

  . 

 

7 Conclusion 

 

The originality of Lienhard interpolation method is solely based on the given support points 

and with its assistance it generates all other quantities appearing in the mathematical 

formulation of interpolation problem. In contrast with the original version of Lienhard method, 

in which every segment of the interpolation curve output is parameterised on the same interval 

<-1,1>, the author of this article came up with the process of individual belonging of the 

parametric interval for each part of the interpolation curve.  
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