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Abstract. The paper deals with the estimation of variance components which is part of 

a study to assess the capability of a measurement system. The moment method based 

on the ANOVA model with random effects can yield negative estimates which leads 

to ambiguous results. Apart from this, example from a wire drawing laboratory shows 

how the excessive sample-to-sample variation in a destructive gage study may distort 

the assessment of the system's capability. 
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1 Introduction  
 

Sufficient quality of measured data is an important prerequisite for their correct evaluation. 

The measurement quality is influenced both by the measuring instrument used and by the 

conditions under which the measurements take place, including the operator who performs the 

measurements. A set of methods known as MSA (Measurement System Analysis) are used to 

verify the capability of the whole measurement system. Through the repeatability and 

reproducibility (R&R) study, the variability of measurements is analysed. Repeatability refers 

to the variation in repeated measurements made on the same part under identical conditions 

including the operator, while reproducibility refers to the variation in measurements made on 

the part under changing conditions, such as the measurements taken by different operators. 

The total variability of the measurement system is then compared to the process variability or 

to the specification limits and the suitability of the measurement system for a given 

application is assessed. 

Typically, several operators participate in the study, who repeatedly measure several selected 

parts using the same device. Factorial design is used, the factors being Part and Operator. 

Both the experimental design and evaluation methods are described in many publications, see 

[1], [2], [8], and in the manuals of various statistical software products. The problem occurs if 

the characteristic measured on the same part changes over time, if its value is influenced by 

the measurement or if the measurement is destructive. These cases are referred to as non-

repeatable or destructive measurements. The basic designs of the experiment for destructive 

R&R are listed, for example, in [5]. Instead of a part being measured repeatedly, a batch of 
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samples which are similar in terms of the measured characteristic is used in the experiment. It 

means that parts in the standard design are substituted with several such batches. The term 

repeatability becomes somewhat meaningless in this case, but it is still used. Then estimation 

of the variance representing repeatability reflects not only the variability due to the measuring 

device itself, but also the differences between samples. Some approaches aiming to reduce the 

impact of sample-to-sample differences are discussed in [4].  

The paper deals with the problems associated with the design and evaluation of the R&R 

study. Only effects of two factors and their possible interaction are studied. Some methods for 

estimation of variance components and for constructing confidence intervals are described 

and the outputs of gage study analyses that are implemented in Minitab and Statgraphics are 

examined.  

 

 

2  Experimental design for destructive gage study 
 

The first problem concerns designs that are often referred to in connection with the 

destructive gage study - the crossed and nested designs [5]. Their schemes are illustrated in 

Fig. 1 and Fig. 2. In the illustrations two operators are participating in the experiment, each 

measuring nine samples. In the first case, there are three different batches of six samples and 

the samples from the same batch are measured by both operators. In the second case, the 

batches are six and the samples from one batch are measured by only one operator. An 

insufficient size of batches is stated as a reason for the nested design. Both Statgraphics and 

Minitab include nested designs on their gage study menu.  

Without looking at the model equation, it is clear that in Fig. 2 the operator effect is 

confounded with differences between two groups of batches. Only the choice of similar 

batches could reduce this confounding, however, it would be contrary to the recommended 

procedure when the choice of parts (batches in the destructive study) should reflect the actual 

distribution of the measured characteristic. Consequently, only the crossed design is rationale 

for the destructive R&R study. The option of the nested design is the result of 

misunderstanding, see also [4]. Although the samples of the jth batch that are measured by the 

ith operator are nested within the ijth combination, batches are crossed with operators. 

Further, only the crossed design will be considered. 

   

 
 

 Fig. 1. Crossed design.         Fig. 2. Nested design. 
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By default, a complete factorial design with replications is used in non-destructive R&R 

studies and the factors being investigated are Part and Operator. The study includes I parts 

and J operators, each operator measures each of I parts r-times. Considering the 

recommended procedure for operators to proceed to the next measurement of the same part 

after all I parts have been measured, it would be appropriate to consider the layout of blocks 

made up of individual replicas [11] and the model should have the form 

 

 
( )ijk i j ij k ijky p o po b e     

  (1) 

 i = 1, 2, ..., I;  j = 1, 2, ..., J;  k = 1, 2, ..., r 

 

where  denotes a constant (overall mean),
 

, , ( ) ,i j ij kp o po b denote random effects of factors 

Operator, Part, Operator*Part interaction and blocks, 
ijke

 
represents an error component. It 

is commonly assumed that the result is not influenced by the time of measuring, and therefore 

the model without the blocking factor is used 

 

 ( )ijk i j ij ijky p o po e      (2)  

 

The random effects of both factors correspond to the idea that both the parts and operators 

represent random samples. The aim of the study is not to compare the particular parts or the 

operators participating in the experiment; it is to measure the variability between different 

parts and different operators in general. It is assumed that , , ( ) andi j ij ijkp o po e are mutually 

independent and normally distributed random variables with zero means and variances 
2 2 2 2, , andp o po    . Then the variance of response Y can be expressed in the form 

 

 2 2 2 2 2( )ijk t p o poVar y            (3) 

 

The aim of the R&R study is to determine the variance components due to the measurement 

system 

 2 2 2 2

&R R o po       (4) 

 

and compare it with the total variance (3). Symbol 
2 represents repeatability and  2 2

o op    

reproducibility. 

In the destructive R&R study, where parts with repeated measurements are replaced by 

batches of similar samples, slight changes will be made in equations (2) to (4) - "p" will be 

replaced by "b". 

 

 

3  Estimation of variance components 

 

There are several methods to estimate variance components. ANOVA, maximum likelihood 

(ML) or restricted maximum likelihood (REML) methods belong to the best-known. For 

balanced data, ANOVA estimators of all variance components are unbiased and have the 

smallest variance of all estimators that are both quadratic functions of the observations and 

unbiased [10]. Under normality, they are minimum variance and unbiased. As the distribution 
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of estimated variance components with exception of the estimate of 
2 cannot be described 

by any theoretical model, the exact confidence limits for 2

&R R  cannot be found. Three 

methods for constructing approximate confidence limits can be used (see 3.2). The 

disadvantage of ANOVA is that it can yield negative estimates of variance components.  

ML estimates of variance components are never negative but they are negatively biased. 

Under certain conditions of regularity, which are normally met in practice, they are consistent 

and asymptotically normal and efficient [7]. Using the asymptotic variance-covariance matrix, 

which is the inverse of the information matrix, confidence intervals for individual components 

and their sum 2

&R R  can be constructed. 

REML estimates, which are based on the logarithm of the restrictive maximum likelihood, 

take account of the number of the fixed effect parameters estimated (there is only one in the 

case of model (1)) and are recommended for mixed-effect models. They are usually 

approximately unbiased. For balanced data and if the ANOVA estimates are nonnegative, the 

REML and ANOVA estimates are identical. The REML estimates usually have higher mean-

squared error (MSE) than the ML estimates. 

Only the ANOVA method and three approaches to construction of approximate confidence 

are described; explanation of other two methods goes beyond the scope of this article.  

  

 

3.1  ANOVA method  

 

For balanced data, it is common practice to estimate variance components by the moment 

method based on ANOVA model (2). The mean squares in the ANOVA table are equated to 

their expected values (Tab. 1) and the resulting equations are solved for the variance 

components. The method is usually referred to as the ANOVA method. Sums of squares, 

degrees of freedom, and average squares are determined as in fixed effects models, see for 

example [8].  

 

 

Source 
Sum of 

squares 

Degrees of 

freedom 
Mean square Expected mean square 

Part 1SS   I – 1 1M  2 2 2

1 po pr Jr       

Operator 2SS  J – 1 2M  2 2 2

2 po or Ir       

Interaction 3SS  (I – 1)(J – 1) 3M  2 2

3 por     

Residual 4SS  IJ(r – 1) 4M  2

4   

 

Tab. 1. Expected mean squares, ANOVA, random effects model.  

 

 

The expected mean squares are also used to construct F-statistics and test whether the 

variance components differ significantly from zero (see [8] for details). 

Estimates of the variance components are 
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 2 1 3ˆ
p

M M

Jr



   2 2 3ˆ

o

M M

Ir



    2 3 4ˆ

po

M M

r



    2

4
ˆ M    (5) 

 

Using 2

&R R  , we can write 

 

 2 3 4( 1) ( 1)I I r

Ir

  


   
   (6) 

and 

 2 3 4( 1) ( 1)
ˆ

M I M I r M

Ir


   
   (7) 

 

A negative estimate in (5) indicates that the true value of the corresponding variance 

component is zero. Even if it is replaced by zero, some problems remain. Replacing the 

negative estimate by zero disturbs the properties of estimates - they are not unbiased but their 

mean squared error is smaller [10]. Another approach is to drop the corresponding effect from 

the model. This approach is commonly used in connection with the interaction term but 

sometimes the factor Operator should be omitted. However, some statistical packages do not 

allow omitting this main effect while leaving the interaction term in the model. 

 

 

3.2  Confidence limits 

 

It can be shown that under the normality assumptions, the following notation applies 

 

 2 ( )
( )

q q

q

q

f M
f

E M
 ,  q = 1, 2, 3, 4     (8) 

 

and 
qM are independent. Consequently, the exact confidence intervals for ( )q qE M   can be 

determined. However, no theoretical model of the distribution of 2ˆ
o  

or
 

2ˆ
po , which are linear 

combinations of mean squares, exists and therefore only approximate confidence limits for 
2

o and
 

2

po , as well as for 2

&R R  can be determined. 

Three methods for constructing approximate confidence intervals are presented in the paper: 

modified large sample method [3], Satterthwaite method [9] and AIAG method [1]. Due to 

the specific application in which small values of variance components are desirable, only 

upper one-sided confidence limits are considered.  

 

 

3.2.1 Modified large sample method 

 

For ˆ
q q

q

c M  , the approximate upper 100(1–)% one-sided confidence limit is given by 

the formula [6]  

 

 2 2 2ˆ
MLS q q q

q

U H c M       (9) 
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where  

 
2

1
( )

q

q

q

f
H

f
     and   

2

1
c

Ir
   

3

1I
c

Ir


    

4

( 1)I r
c

Ir


  

 

 

3.2.2 Satterthwaite method 

  

The distribution of 
ˆm


is approximated by the chi-square distribution with m degrees of 

freedom, where m is the highest integer for which 

 

   
2

2 2

ˆ

q q

q q

m
c M

f






  (10) 

 

Consequently, the one-sided upper limit is 
 

 
2

ˆ

( )
satt

m
U

m




     (11) 

 

3.2.3 AIAG method  
 

The method recommended by AIAG is based on the exact confidence interval for 

2 2( )E M  . The exact confidence limit for 2 or 2 / Ir is adjusted by adding the remaining 

terms in (6), with the expected mean squares 3 and 4  being replaced by their estimates  

3M and 4M . The approximate upper confidence limit is 

 

   2 2 3 4( 1) ( 1) ( 1)
AIAG

H M I M I r M
U

Ir

    
   (12) 

  

 
4  Example 
  

In the R&R study samples of drawn wire were tested for tensile strength Rm. Due to the 

destructive nature of the measurements, twelve drawn wires with the final diameter of 2.5 mm 

were produced from 5.5 mm thick rolled rods by the drawing machine under different 

experimental conditions. From each wire, nine samples were prepared and divided between 

three operators.   

 

 

4.1 Results in Minitab  
 

Minitab uses the ANOVA method to estimate variance components and the modified large 

sample method to construct confidence limits. Two parts of the output yielded by Minitab are 

displayed in Tab. 2 and Tab. 3. 
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Source Sum of Squares Df Mean Square F-Ratio P-Value 

Batch 260975 11 23725.0 14.1000 0.000 

Operator 126 2 63.2 0.0376 0.963 

Batch*Operator 37017 22 1682.6 2.0719 0.011 

Residual 58471 72 812.1   

Total (corrected) 356590 107    

 

Tab. 2. ANOVA for full factorial design, Minitab. 

 

 

Source Var Comp 
95% Upper  

Bound 

% Contribution  

(of Var Comp) 

95% Upper 

Bound 

Total Gage R&R      1102.27    1547.689           31.04       48.05 

Repeatability 812.10    1093.688           22.87       37.21 

Reproducibility 290.17     695.486            8.17       19.08 

Operator 0.00      33.460            0.00        0.00 

Operator*Batch   290.17     730.997            8.17       21.52 

Batch -to- Batch        2449.15    6147.498           68.96       85.60 

Total Variation     3551.42    7267.499          100.00  

 

Tab. 3. Gage R&R, Minitab.  

 

 

The variance component estimates in Tab. 3 indicate that no significant differences between 

operators exist ( 2ˆ 0o  ). Based on the corresponding P-value in Tab. 2, we can consider 
2 0o  . However, the estimate of the interaction variance component 2ˆ 290.17bo  differs 

significantly from zero. Reproducibility is given only by 2ˆ
bo . The contribution of repeata-

bility ( 2ˆ 812.10  ) to the total gage variation, the estimate of which is 1102.27, is 

considerable. Based on this value, the measurement system is found inadequate since the 

contribution of R&R is greater than 30 %, which is the maximum acceptable value according 

to [1]. However, since the repeatability cannot be separated from the within-batch variation 

and the same can be said about the interaction, it is more likely that the large variation results 

from non-uniform mechanical properties along the wire length due to an imperfect technology 

of the wire production.  

Let us now look at the results of the estimation in more detail, see Tab. 4. Together with the 

confidence limits obtained by the modified large sample method, which are further discussed, 

the results of other two methods are displayed for information.  Using formulas (5) we get 

 

 2ˆ 44.984o     2ˆ 290.171bo    2ˆ 812.099    and   2

&
ˆ 1057.286R R   

  

The upper confidence limit according to (9) is 1502.705MLSU  , Minitab yields 1547.689.  
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Differences between the values of 2

&
ˆ

R R
 
and the values of the confidence limits

 
correspond to 

replacing the negative estimate by zero. The question is whether the confidence limit should 

not be based on the formula 2 2

bo    . In this case we get 2

&
ˆ 1102.27R R  and 

1579.928MLSU  . Searle et al. [10] suggest reducing the original model, as is commonly done 

in the case of insignificant interaction, however, even the GLM procedure does not allow it in 

Minitab. 

 

Estimation 

method 
Estimate CL method 

95%  upper 

CL 
Note 

ANOVA 

1057.286 
MLS 1502.705 Model (2) 

Negative estimate not replaced 

1102.270 

MLS 1547.689 Model (2) 

Negative estimate replaced by 0, 

Formulas for CL unchanged 

SATT 1474.831 

AIAG 1089.750 

MLS 1579.928 Model (2)  

Negative estimate replaced by 0 

CL based on 2 2

bo     

SATT 1506.040 

AIAG 1541.492 

1088.776 

MLS 1564.615 
Model without Operator 

CL based on 2 2

bo     
SATT 1442.292 

AIAG 1527.999 

ML 1057.287 - - Calculation of ASYCOV matrix 

failed 
REML 1057.233 - - 

  

Tab. 4. Differences in estimates and confidence limits. 

 

 

4.2 Results in Statgraphics 
 

The output of R&R procedure displays estimated standard deviations and two-sided 

confidence limits. The formulas for confidence limits are not available in the Statgraphics 

manual, though. Tab. 5 shows the recalculated values of estimated variances and confidence 

limits for variance components to compare the results with Minitab. 

The estimates in Tab. 5 agree with the results in Minitab while the confidence limits except 

for repeatability are strikingly different. Especially the confidence interval for R&R is 

suspiciously narrow and if the level of confidence is changed to 90 %, the upper limit is even 

lower than the estimate. 

GLM procedure in Statgraphics can be used to omit the main effect of Operator in (2). 

Resulting estimates are (Tab. 4) 
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2ˆ 296.918bo  2ˆ 791.858   and 2

&
ˆ 1088.776R R   

 

 The procedure does not enable to calculate confidence limits. 

 

 

 95% confidence 90% confidence 

 Lower CL Estimate Upper CL Lower CL Estimate Upper CL 

Repeatability 600.608 812.102 1159.498 630.020 812.102 1093.691 

Reproducibility 0 0 0 0 0 0 

Interaction 155.169 290.171 615.789 171.505 290.171 543.389 

R & R 1056.010 1102.273 1124.858 1056.120 1102.273 1089.753 

Parts 925.310 2449.151 7830.055 1084.405 2449.151 6431.783 

 

Tab. 5. Variance estimates and confidence limits, Statgraphics, recalculated.  

 

 

5  Conclusion 
 

Based on the study, following conclusions can be drawn: 

1. The procedure for nested design implemented in Minitab or Statgraphics is not suitable 

for R&R study because of confounding effects of Operator and differences between 

batch groups assigned to them.   

2. The analysis of destructive R&R study can yield an evidence of satisfactory system 

capability if the total gage variance is small. On the other side, nothing can be concluded 

if the gage variance is large, because its components can be influenced by sample-to-

sample variation. 

3. From the statistical point of view, the way of estimation is not unambiguous if some of 

the estimates are negative. This is especially true for construction of the approximate 

confidence limits. Moreover, the confidence limits yielded by Statgraphics are not usable. 

4. The methods for CL constructions should be compared as to how the stated confidence 

level is maintained. For example, based on their simulation study, Burdick and Larsen [3] 

claim that only MLS intervals met the stated confidence level - simulated confidence 

levels for other methods were lower. The lower confidence limits for SATT and AIAG in 

Tab. 4 do not contradict these findings.  

5. Although the way of ML and REML estimation excludes the possibility of negative 

estimates, the resulting estimates of the total gage variance almost coincide with the 

unbiased estimates obtained by ANOVA (without replacement by 0). 

6. Asymptotic confidence limits based on ML or REML estimation and the asymptotic 

variance-covariance matrix of estimates could not be determined because the calculation 

of the asymptotic variance-covariance matrix failed in SPlus. 

7. Another approach could make use of the Bayes mixed model and credible intervals. This 

approach will be the subject of further study. 
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