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1 Introduction 

 

In practice, there are many technical problems that are mathematically modeled as Model 1 

 1 1 2 2( ) ( ) ( ) ... ( )i i i i k k i iY Y x a f x a f x a f x e ,    1,  2,..., i n  (1) 

where iY , 1,  2,..., i n  are random variables, whose realizations 1 2,  ,..., ny y y  are the 

measurement results. 

These results depend on the function 1 1 2 2( ) ( ) ... ( )k ka f x a f x a f x , known and non-random 

effects 1 2,  ,..., nx x x  and k  parameters 1 2, , , ka a a , whose values are unknown; ie  is a random 

error of the i-th measurement. Model 1 is called a linear model (linear in parameters). 

Here are two examples from practice: 

1. It is known from theory that in a certain range of temperatures x , the extension of the y  

copper pipe is a linear function of the temperature passing thru the null point. 

Measurements in this area can be written using a linear model 

 1i i iY a x e ,   1,  2,..., i n   
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2. Fuel consumption in a certain area of a car's speed is a quadratic function of speed. 

Therefore, the speed measurement x  in this area can be described by a linear model  

 
2

1 2 3i i i iY a a x a x e ,   1,  2,..., i n   

2 Generalized linear model 

Model 1 can be generalized and expressed in matrix form. We supposed, that 

 
T

1 2( ,  ,  ..., )ne e ee  (2) 

is a vector of random errors, which is assumed to have the n-dimensional normal 

distribution with zero means: 

 ( ) 0iE e ,   1,  2,...,  i n  (3) 

and 

 
2

e YΣ Σ H  (4) 

is a symmetric matrix of the type n n  called covariance matrix. H  is a matrix of weights 

with elements ijh , , 1, 2, ,i j n . The variance of the random variable iY  is 

2 2cov( , )ii i i ih Y Y  and the covariance between variables iY  and jY  is 2 cov( , )ij i jh Y Y , 

i j . Now we can write a generalized linear model in matrix form as Model 2 as follows: 

 Y Aβ e ,   
2

YΣ H  (5) 

where 
T

1 2( , , , )nY Y YY  is a known measurement vector,  

A  is known experimental design matrix of type n k , 

T

1 2( ,  ,...,  )ka a aβ  is a vector of unknown regression coefficients, 

T

1 2( ,  ,  ..., )ne e ee  is vector of random errors and 

Y
Σ  is a covariance matrix. 

Model 2 can be written as an ordered triple as follows: 

 
2( , , )Y Aβ H  (6) 

Point estimators in Model 

An estimator β̂  of the regression coefficients vector β  is obtain by the generalized least 

squares method as the minimum of quadratic form 
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T 1 T 1( ) ( ) ( )fe H e Y Aβ H Y Aβ β   

The quadratic form is adjusted to 
T -1 T -1 T T -1( ) 2f β Y H Y Y H Aβ β A H Aβ , and by 

deriving is to get 
T -1 T -1 ( )

2 2
 

f β
A H Y A H Aβ

β
. 

It can be proved that the least squares estimator of β̂  is 

 
1

T -1 T -1
β̂ A H A A H Y  (7) 

This is the minimum variance unbiased estimator (MVUE) of each component ia  of the 

regression coefficients vector β . Furthermore, it can be proved that the covariance matrix of 

β̂  is  

 
1

2 T -1

β̂
Σ A H A  (8) 

and the unbiased estimator of variance 
2  is 

 
T 1

2
ˆ ˆ( ) ( )

ˆ
n k

Y Aβ H Y Aβ
 (9) 

When (9) is inserted into (8) we get the estimator of the covariance matrix of β̂  

 
1

2 T 1

ˆ
ˆ ˆ
β

Σ X H X  (10) 

It is often necessary to estimate the various linear combinations of the parameter vector, 

which we call parametric functions and write in matrix form 

 
T

1 1 2 2  ...  k kp a p a p ap β  (11) 

where 
T

1 2( ,  ,  ..., )kp p pp  and 
T

1 2( , , , )ka a aβ . 

Let us consider the linear model 
2( , , )Y Xβ H  and the parametric function 

T
p β . It can be 

proved that the minimum variance unbiased estimator of the parametric function is 

 
1

T T T 1 T 1ˆp β p X H X X H Y  (12) 

and the variance of the parametric function is 
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1

T 2 T T 1ˆ( )D p β p X H X p  (13) 

When (9) is inserted into (13) we get the estimator of T ˆ( )D p β  

 
1

T 2 T T 1ˆ ˆ( )D p β p X H X p  (14) 

Assume that the vector Y  in the linear models 
2( , , )Y Xβ H  has n-dimensional normal 

distribution then it is valid: 

 
T T

1
2 T T 1

ˆ
(0,1)N

p β p β

p X H X p

 (15) 

 
2 1 2ˆ ˆ( ) ( ) ( )T n kY Xβ H Y Xβ  (16) 

It can be proved that these two random variables are independent. 

Then from the definition of t-distribution and relationship (9) it follows that 

 
T T

1
2 T T 1

ˆ
( )

ˆ

t n k
p β p β

p X H X P

 (17) 

From the last statement, confidence intervals can be derived. 

Confidence Intervals in Model 2 

It is true that the 100(1 ) % two-sided confidence interval for the parametric function 
T

p β  

is 

 
T 1

1
T T T 1

ˆ ˆ( ) ( )ˆ ( , )t n k
n k

Y Xβ H Y Xβ
p β p X H X p  (18) 

Using (18), it can be specify the interval estimate of any parameter (e.g. 
T

1a p β , where 

T (1,  0,  ..., 0)p ) and the functional value at any point. 

When calculating estimates of the functional values at several points, we get the confidence 

band around (theoretical) function of 1 1 2 2( ) ( ) ... ( )k ka f x a f x a f x . However, it cannot 

be interpreted this band in such a way that it in confidence 1  covers the entire theoretical 

function. 

The confidence band for the entire function 1 1 2 2( ) ( ) ... ( )k ka f x a f x a f x  covering this 

function with confidence 1  is given by the relationship 
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T 1

1
T T T 1

ˆ ˆ( ) ( )ˆ ( , , )kF k n k
n k

Y Xβ H Y Xβ
p β p X H X p  (19) 

where ( , , )F k n k  is critical value of F–distribution with degrees of freedom k  a n k . 

Tests of Hypotheses in Model 2 

It is supposed to test the hypothesis 0H  that the actual value of the parametric function is 

equal to the real number q versus the alternative 1H  that it is not equal to this number. This 

hypothesis can be written as follows 

 
T

0 :  H qp β  vs. 
T

1 :  H qp β  (20) 

The test statistic, which has the t-distribution with n k  degrees of freedom under the 

hypothesis 0H  validity, is given by the relation 

 
T

T 1
1

T T 1

ˆ

ˆ ˆ( ) ( )

q
T

n k

p β

Y Xβ H Y Xβ
p X H X p

 (21) 

The null hypothesis in (20) is rejected at the level of significance  when 

 ( ,  )T t n k α  (22) 

These tests can be used to test arbitrary coefficient of the parameter vector, a functional value 

at any point, and so on. It is often used to test the statistical significance of individual 

regression coefficients. In this case, the hypothesis 

 0:  0iH a  (23) 

is tested. 

3 Example 

It is given 4 independent measurements iy  with double precision at extreme points that are 

shown in Tab. 1. 

 

ix  2 3 4 5 

iy  3.5 1.7 1.3 2.6 

Table 1. Independent measurements. 
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Assuming that the functional dependence between x, y is quadratic, we estimate the regression 

coefficients and their variance. 

Solution 

Since the functional dependence between x, y is quadratic, we are looking for the regression 

function 
2 0 2ˆ ˆˆ ˆ ˆ ˆ ˆy a bx cx ax bx cx . It is necessary to calculate (estimate) unknown 

regression coefficients ˆˆ ˆ, ,a b c . 

 For individual measured values iy  are : 

 

Fig. 1.  Graphic individual measured values iy . 

in the form of equations: 

ˆ , 1,..., 4i i iy y i  

0 1 2ˆˆ ˆ , 1,..., 4i i i i iy a x b x c x i  

      

0 1 2

1

0 1 2

2

0 1 2

3

0 1 2

2

ˆˆ ˆ3,5 2 2 2

ˆˆ ˆ1,7 3 3 3

ˆˆ ˆ1,3 4 4 4

ˆˆ ˆ2,6 5 5 5

a b c

a b c

a b c

a b c

 

in matrix form: 

                 y     =       X        ×     β   +  ε  

 

1

2

3

4

3,5 1 2 4 ˆ
1,7 1 3 9 ˆ
1,3 1 4 16

ˆ
2,6 1 5 25

a

b

c

 

where:  y  – measurement vector, 
2( , , )Y Xβ H , 

                 X  – design matrix (of experiment), 

                  ε  – vector of random errors (vector of deviations between measured and estimated   

 Covariance matrix of vectors y  or ε  is : 
2 2

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

Y ε
Σ Σ H  

 where: 2  is unknown dispersion factor, 

             H  is matrix of weights ( 11 44 2h h  – double inaccuracy at extreme points). 

 Regression coefficients ˆˆ ˆ, ,a b c  are estimated by the generalized least squares method 

(GLSM) – the sum of squares of measurement errors is required to be minimal. 
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For random errors i  of measurement iy  is valid: 

in the form of equations: 

ˆ , 1, , 4i i iy y i  

0 1 2ˆˆ ˆ , 1,..., 4i i i i iy a x b x c x i  

0 1 2

1

0 1 2

2

0 1 2

3

0 1 2

2

ˆˆ ˆ3,5 2 2 2

ˆˆ ˆ1,7 3 3 3

ˆˆ ˆ1,3 4 4 4

ˆˆ ˆ2,6 5 5 5

a b c

a b c

a b c

a b c

 

in matrix form: 

 

                ε     =     y    –        X        ×   β  

1

2

3

4

3,5 1 2 4 ˆ
1,7 1 3 9 ˆ
1,3 1 4 16

ˆ
2,6 1 5 25

a

b

c

 

It is required, that T 1 T 1( ) ( ) minε H ε Y Xβ H Y Xβ . 

Here it should be noted that 

 known: y , X  – design matrix, H  − matrix of weights, 

 unknown: [ , , ]Ta b cβ  – wants to be estimated. 

Therefore  

           

T 1( ) ( ) ( )β Y Xβ H Y Xβ  

T 1ˆˆ ˆ([ , , ] ) ( ) ( )Ta b c Y Xβ H Y Xβ  

Minimize 
T 1
ε H ε  actual means to find a local minimum vector ˆˆ ˆ[ , , ]Ta b c  of the function 

( )β . 

The function ( )β  acquires a minimum at a stationary point ˆˆ ˆ[ , , ]Ta b c  that is a solution to a 

system of normal equations 

 ( ) ( ) ( ) ( )
0 0 0

ˆˆ ˆ a cb

β β β β
0

β
. 

By solving the system of normal equations an estimate of the individual regression 

coefficients is obtained: 

1
1 1ˆˆ ˆ, ,

T
T Ta b cβ X H X X H y
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1165 1365 17

22 44 4ˆ 6,05 11,9136
1365 1649 21ˆˆ 20,3 5,74318
44 88 8

ˆ 75,6 0,775
17 21 3

4 8 8

a

b

c

 

Estimated regression function: 
2 2ˆˆ ˆ ˆ 11,9136 5,74318 0,775y a bx cx x x  

Note. 

The solution β  exists only if the inverse matrix 
1

1T
X H X  exists, that means the matrix 

1T
X H X  is regular  its determinant is different from zero ( 1 0T

X H X ). 

Auxiliary calculations (symmetric matrixes): 

1

0,5 0 0 0 3,5
1 1 1 1 6,05

0 1 0 0 1,7
2 3 4 5 20,3

0 0 1 0 1,3
4 9 16 25 75,6

0 0 0 0,5 2,6

T
X H y  

symmetric matrixes:  

1

0,5 0 0 0 1 2 4
1 1 1 1 3 10,5 39,5

0 1 0 0 1 3 9
2 3 4 5 10,5 39,5 157,5

0 0 1 0 1 4 16
4 9 16 25 39,5 157,5 657,5

0 0 0 0,5 1 5 25

T
X H X    

1
1

1165 1365 17

22 44 4 52,9545 31,0227 4,25
1365 1649 21

31,0227 18,7386 2,625
44 88 8

4,25 2,625 0,375
17 21 3

4 8 8

T
X H X  
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Fig. 2.  Graphic verification of accuracy of the regression function found. 

 

 To estimate the dispersion of regression coefficients, it is first necessary to calculate the 

dispersion estimate of 2 : 

1
2 1( ) ( ) 1
ˆ ( ) ( )

T
T

n k n k

y Xβ H y Xβ
y Xβ H y Xβ  

where: n = 4 – number of measurements, 

                 k = 3 – number of regression coefficient. 

Then 

2 1 11
ˆ ( ) ( ) ( ) ( )

4 3

T T
y Xβ H y Xβ y Xβ H y Xβ

 

 

2

0,0272727 0,5 0 0 0 0,0272727

0,0409091 0 1 0 0 0,0409091
ˆ

0,0409091 0 0 1 0 0,0409091

0,0272727 0 0 0 0,5 0,0272727

T

 

 
2ˆ 0,00409091  

 

The estimator of the covariance matrix of β̂  (symmetric matrix) is: 

1
2 T 1

ˆ
ˆ ˆ
β

Σ X H X
 

 

ˆ

1165 1365 17

22 44 4 0,216632 0,126911 0,017386
1365 1649 21ˆ 0,00409091 0,126911 0,076658 0,010738
44 88 8

0,017386 0,010738 0,001534
17 21 3

4 8 8

β
Σ  
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Variances of the estimated regression coefficients lie on the main diagonal of the matrix and 

their values are: 

ˆ( ) 0,216632

ˆ( ) 0,0766581

( ) 0,00153409

D a

D b

D c

  

4 Conclusion 

 

The article presents the theory of the generalized linear model. The example shows the use of 

a diagonal covariance matrix in the model. The end points are measured with double 

precision. 
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