

GENERALIZED LINEAR MODEL WITH SOFTWARE MATHEMATICA ${ }^{\circledR}$
 JANIGA Ivan (SK), GABKOVÁ Jana (SK)

Abstract

Generalized linear model is used to model the functional dependencies, where one variable is a random variable and the second variable is non-random.

Keywords: generalized linear model, vector of measurements, vector of parameters, design matrix, covariance matrix.

Mathematics Subject Classification: C1, C12, C6.

1 Introduction

In practice, there are many technical problems that are mathematically modeled as Model $\mathbf{1}$

$$
\begin{equation*}
Y_{i}=Y\left(x_{i}\right)=a_{1} f_{1}\left(x_{i}\right)+a_{2} f_{2}\left(x_{i}\right)+\ldots+a_{k} f_{k}\left(x_{i}\right)+e_{i}, \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where $Y_{i}, i=1,2, \ldots, n$ are random variables, whose realizations $y_{1}, y_{2}, \ldots, y_{n}$ are the measurement results.
These results depend on the function $a_{1} f_{1}(x)+a_{2} f_{2}(x)+\ldots+a_{k} f_{k}(x)$, known and non-random effects $x_{1}, x_{2}, \ldots, x_{n}$ and k parameters $a_{1}, a_{2}, \ldots, a_{k}$, whose values are unknown; e_{i} is a random error of the i-th measurement. Model 1 is called a linear model (linear in parameters).

Here are two examples from practice:

1. It is known from theory that in a certain range of temperatures x, the extension of the y copper pipe is a linear function of the temperature passing thru the null point. Measurements in this area can be written using a linear model

$$
Y_{i}=a_{1} x_{i}+e_{i}, \quad i=1,2, \ldots, n
$$

2. Fuel consumption in a certain area of a car's speed is a quadratic function of speed. Therefore, the speed measurement x in this area can be described by a linear model

$$
Y_{i}=a_{1}+a_{2} x_{i}+a_{3} x_{i}^{2}+e_{i}, \quad i=1,2, \ldots, n
$$

2 Generalized linear model

Model 1 can be generalized and expressed in matrix form. We supposed, that

$$
\begin{equation*}
\boldsymbol{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)^{\mathrm{T}} \tag{2}
\end{equation*}
$$

is a vector of random errors, which is assumed to have the n-dimensional normal distribution with zero means:

$$
\begin{equation*}
E\left(e_{i}\right)=0, \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{e}=\Sigma_{Y}=\sigma^{2} \boldsymbol{H} \tag{4}
\end{equation*}
$$

is a symmetric matrix of the type $n \times n$ called covariance matrix. \boldsymbol{H} is a matrix of weights with elements $h_{i j}, i, j=1,2, \ldots, n$. The variance of the random variable Y_{i} is $\sigma^{2} h_{i i}=\operatorname{cov}\left(Y_{i}, Y_{i}\right)=\sigma_{i}^{2}$ and the covariance between variables Y_{i} and Y_{j} is $\sigma^{2} h_{i j}=\operatorname{cov}\left(Y_{i}, Y_{j}\right)$, $i \neq j$. Now we can write a generalized linear model in matrix form as Model 2 as follows:

$$
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\beta}+\boldsymbol{e}, \quad \boldsymbol{\Sigma}_{Y}=\sigma^{2} \boldsymbol{H} \tag{5}
\end{equation*}
$$

where $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{\mathrm{T}}$ is a known measurement vector,
\boldsymbol{A} is known experimental design matrix of type $n \times k$,
$\boldsymbol{\beta}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)^{\mathrm{T}}$ is a vector of unknown regression coefficients,
$\boldsymbol{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)^{\mathrm{T}}$ is vector of random errors and
Σ_{Y} is a covariance matrix.
Model 2 can be written as an ordered triple as follows:

$$
\begin{equation*}
\left(\boldsymbol{Y}, \boldsymbol{A} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{H}\right) \tag{6}
\end{equation*}
$$

Point estimators in Model

An estimator $\hat{\boldsymbol{\beta}}$ of the regression coefficients vector $\boldsymbol{\beta}$ is obtain by the generalized least squares method as the minimum of quadratic form

$$
\boldsymbol{e}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{e}=(\boldsymbol{Y}-\boldsymbol{A} \boldsymbol{\beta})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{A} \boldsymbol{\beta})=f(\boldsymbol{\beta})
$$

The quadratic form is adjusted to $f(\boldsymbol{\beta})=\boldsymbol{Y}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{Y}-2 \boldsymbol{Y}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{A} \boldsymbol{\beta}+\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{A} \boldsymbol{\beta}$, and by deriving is to get $\frac{\partial f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=-2 \boldsymbol{A}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{Y}+2 \boldsymbol{A}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{A} \boldsymbol{\beta}$.

It can be proved that the least squares estimator of $\hat{\boldsymbol{\beta}}$ is

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\boldsymbol{A}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{A}^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{Y} \tag{7}
\end{equation*}
$$

This is the minimum variance unbiased estimator (MVUE) of each component a_{i} of the regression coefficients vector $\boldsymbol{\beta}$. Furthermore, it can be proved that the covariance matrix of $\hat{\boldsymbol{\beta}}$ is

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}}=\sigma^{2} \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{A}^{-1} \tag{8}
\end{equation*}
$$

and the unbiased estimator of variance σ^{2} is

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{(\boldsymbol{Y}-\boldsymbol{A} \hat{\boldsymbol{\beta}})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{A} \hat{\boldsymbol{\beta}})}{n-k} \tag{9}
\end{equation*}
$$

When (9) is inserted into (8) we get the estimator of the covariance matrix of $\hat{\boldsymbol{\beta}}$

$$
\begin{equation*}
\hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\beta}}}=\hat{\sigma}^{2} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \tag{10}
\end{equation*}
$$

It is often necessary to estimate the various linear combinations of the parameter vector, which we call parametric functions and write in matrix form

$$
\begin{equation*}
\boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta}=p_{1} a_{1}+p_{2} a_{2}+\ldots+p_{k} a_{k} \tag{11}
\end{equation*}
$$

where $\boldsymbol{p}^{\mathrm{T}}=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ and $\boldsymbol{\beta}^{\mathrm{T}}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$.
Let us consider the linear model $\left(\boldsymbol{Y}, \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{H}\right)$ and the parametric function $\boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta}$. It can be proved that the minimum variance unbiased estimator of the parametric function is

$$
\begin{equation*}
\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}}=\boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{Y} \tag{12}
\end{equation*}
$$

and the variance of the parametric function is

$$
\begin{equation*}
D\left(\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}}\right)=\sigma^{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{p} \tag{13}
\end{equation*}
$$

When (9) is inserted into (13) we get the estimator of $D\left(\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}}\right)$

$$
\begin{equation*}
D\left(\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}}\right)=\hat{\sigma}^{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{p} \tag{14}
\end{equation*}
$$

Assume that the vector \boldsymbol{Y} in the linear models $\left(\boldsymbol{Y}, \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{H}\right)$ has n-dimensional normal distribution then it is valid:

$$
\begin{gather*}
\frac{\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}}-\boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta}}{\sqrt{\sigma^{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{p}}} \sim N(0,1) \tag{15}\\
\sigma^{-2}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{T} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}) \sim \chi^{2}(n-k) \tag{16}
\end{gather*}
$$

It can be proved that these two random variables are independent.
Then from the definition of t-distribution and relationship (9) it follows that

$$
\begin{equation*}
\frac{\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}}-\boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta}}{\sqrt{\hat{\sigma}^{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{P}}} \sim t(n-k) \tag{17}
\end{equation*}
$$

From the last statement, confidence intervals can be derived.

Confidence Intervals in Model 2

It is true that the $100(1-\alpha) \%$ two-sided confidence interval for the parametric function $\boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta}$ is

$$
\begin{equation*}
\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}} \pm t(n-k, \alpha) \sqrt{\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})}{n-k} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{p}} \tag{18}
\end{equation*}
$$

Using (18), it can be specify the interval estimate of any parameter (e.g. $a_{1}=\boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta}$, where $\left.\boldsymbol{p}^{\mathrm{T}}=(1,0, \ldots, 0)\right)$ and the functional value at any point.

When calculating estimates of the functional values at several points, we get the confidence band around (theoretical) function of $a_{1} f_{1}(x)+a_{2} f_{2}(x)+\ldots+a_{k} f_{k}(x)$. However, it cannot be interpreted this band in such a way that it in confidence $1-\alpha$ covers the entire theoretical function.
The confidence band for the entire function $a_{1} f_{1}(x)+a_{2} f_{2}(x)+\ldots+a_{k} f_{k}(x)$ covering this function with confidence $1-\alpha$ is given by the relationship

$$
\begin{equation*}
\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}} \pm \sqrt{k F(k, n-k, \alpha)} \sqrt{\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})}{n-k} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{p}} \tag{19}
\end{equation*}
$$

where $F(k, n-k, \alpha)$ is critical value of F-distribution with degrees of freedom k a $n-k$.

Tests of Hypotheses in Model 2

It is supposed to test the hypothesis H_{0} that the actual value of the parametric function is equal to the real number q versus the alternative H_{1} that it is not equal to this number. This hypothesis can be written as follows

$$
\begin{equation*}
H_{0}: \boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta}=q \text { vs. } H_{1}: \boldsymbol{p}^{\mathrm{T}} \boldsymbol{\beta} \neq q \tag{20}
\end{equation*}
$$

The test statistic, which has the t-distribution with $n-k$ degrees of freedom under the hypothesis H_{0} validity, is given by the relation

$$
\begin{equation*}
T=\frac{\boldsymbol{p}^{\mathrm{T}} \hat{\boldsymbol{\beta}}-q}{\sqrt{\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})}{n-k} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \boldsymbol{p}}} \tag{21}
\end{equation*}
$$

The null hypothesis in (20) is rejected at the level of significance α when

$$
\begin{equation*}
|T|>t(n-k, \alpha) \tag{22}
\end{equation*}
$$

These tests can be used to test arbitrary coefficient of the parameter vector, a functional value at any point, and so on. It is often used to test the statistical significance of individual regression coefficients. In this case, the hypothesis

$$
\begin{equation*}
H_{0}: a_{i}=0 \tag{23}
\end{equation*}
$$

is tested.

3 Example

It is given 4 independent measurements y_{i} with double precision at extreme points that are shown in Tab. 1.

x_{i}	2	3	4	5
y_{i}	3.5	1.7	1.3	2.6

Table 1. Independent measurements.

Assuming that the functional dependence between x, y is quadratic, we estimate the regression coefficients and their variance.

Solution

Since the functional dependence between x, y is quadratic, we are looking for the regression function $\hat{y}=\hat{a}+\hat{b} x+\hat{c} x^{2}=\hat{a} x^{0}+\hat{b} x+\hat{c} x^{2}$. It is necessary to calculate (estimate) unknown regression coefficients $\hat{a}, \hat{b}, \hat{c}$.

- For individual measured values y_{i} are:

Fig. 1. Graphic individual measured values y_{i}.
in the form of equations:

$$
\begin{aligned}
& y_{i}=\hat{y}_{i}+\varepsilon_{i}, i=1, \ldots, 4 \\
& y_{i}=\hat{a} \cdot x_{i}^{0}+\hat{b} \cdot x_{i}^{1}+\hat{c} \cdot x_{i}^{2}+\varepsilon_{i}, \quad i=1, \ldots, 4 \\
& 3,5=\hat{a} \cdot 2^{0}+\hat{b} \cdot 2^{1}+\hat{c} \cdot 2^{2}+\varepsilon_{1} \\
& 1,7=\hat{a} \cdot 3^{0}+\hat{b} \cdot 3^{1}+\hat{c} \cdot 3^{2}+\varepsilon_{2} \\
& 1,3=\hat{a} \cdot 4^{0}+\hat{b} \cdot 4^{1}+\hat{c} \cdot 4^{2}+\varepsilon_{3} \\
& 2,6=\hat{a} \cdot 5^{0}+\hat{b} \cdot 5^{1}+\hat{c} \cdot 5^{2}+\varepsilon_{2}
\end{aligned}
$$

where: \boldsymbol{y}-measurement vector, $\left(\boldsymbol{Y}, \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{H}\right)$,
\boldsymbol{X} - design matrix (of experiment),
$\boldsymbol{\varepsilon}$ - vector of random errors (vector of deviations between measured and estimated

- Covariance matrix of vectors \boldsymbol{y} or $\boldsymbol{\varepsilon}$ is: $\Sigma_{Y}=\boldsymbol{\Sigma}_{\varepsilon}=\sigma^{2} \boldsymbol{H}=\sigma^{2} \cdot\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
where: σ^{2} is unknown dispersion factor,
\boldsymbol{H} is matrix of weights ($h_{11}=h_{44}=2$ - double inaccuracy at extreme points).
- Regression coefficients $\hat{a}, \hat{b}, \hat{c}$ are estimated by the generalized least squares method (GLSM) - the sum of squares of measurement errors is required to be minimal.

For random errors ε_{i} of measurement y_{i} is valid:
in the form of equations:
in matrix form:

$$
\begin{aligned}
& \varepsilon_{i}=y_{i}-\hat{y}_{i}, i=1, \ldots, 4 \\
& \varepsilon_{i}=y_{i}-\hat{a} \cdot x_{i}^{0}+\hat{b} \cdot x_{i}^{1}+\hat{c} \cdot x_{i}^{2}, \quad i=1, \ldots, 4 \\
& \varepsilon_{1}=3,5-\hat{a} \cdot 2^{0}+\hat{b} \cdot 2^{1}+\hat{c} \cdot 2^{2} \\
& \varepsilon_{2}=1,7-\hat{a} \cdot 3^{0}+\hat{b} \cdot 3^{1}+\hat{c} \cdot 3^{2} \\
& \varepsilon_{3}=1,3-\hat{a} \cdot 4^{0}+\hat{b} \cdot 4^{1}+\hat{c} \cdot 4^{2} \\
& \varepsilon_{2}=2,6-\hat{a} \cdot 5^{0}+\hat{b} \cdot 5^{1}+\hat{c} \cdot 5^{2}
\end{aligned}
$$

$$
\varepsilon=y-X \times \beta
$$

$$
\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4}
\end{array}\right)=\left(\begin{array}{l}
3,5 \\
1,7 \\
1,3 \\
2,6
\end{array}\right)-\left(\begin{array}{rrr}
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16 \\
1 & 5 & 25
\end{array}\right) \cdot\left(\begin{array}{l}
\hat{a} \\
\hat{b} \\
\hat{c}
\end{array}\right)
$$

It is required, that $\boldsymbol{\varepsilon}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{\varepsilon}=(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})=\min$.
Here it should be noted that

- known: $\boldsymbol{y}, \boldsymbol{X}$ - design matrix, \boldsymbol{H} - matrix of weights,
- unknown: $\boldsymbol{\beta}=[a, b, c]^{T}$ - wants to be estimated.

Therefore

$$
\begin{aligned}
\varphi(\boldsymbol{\beta}) & =(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}) \\
\varphi\left([\hat{a}, \hat{b}, \hat{c}]^{T}\right) & =(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{\mathrm{T}} \boldsymbol{H}^{-1}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})
\end{aligned}
$$

Minimize $\boldsymbol{\varepsilon}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{\varepsilon}$ actual means to find a local minimum vector $[\hat{a}, \hat{b}, \hat{c}]^{T}$ of the function $\varphi(\boldsymbol{\beta})$.

The function $\varphi(\boldsymbol{\beta})$ acquires a minimum at a stationary point $[\hat{a}, \hat{b}, \hat{c}]^{T}$ that is a solution to a system of normal equations

$$
\frac{\partial \varphi(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=\boldsymbol{0} \Leftrightarrow \frac{\partial \varphi(\boldsymbol{\beta})}{\partial \hat{a}}=0 \wedge \frac{\partial \varphi(\boldsymbol{\beta})}{\partial \hat{b}}=0 \wedge \frac{\partial \varphi(\boldsymbol{\beta})}{\partial \hat{c}}=0 .
$$

By solving the system of normal equations an estimate of the individual regression coefficients is obtained:

$$
\boldsymbol{\beta}=\hat{a}, \hat{b}, \hat{c}^{T}=\boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1} \cdot \boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{y}
$$

$$
\hat{\beta}=\left(\begin{array}{l}
\hat{a} \\
\hat{b} \\
\hat{c}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1165}{22} & \frac{-1365}{44} & \frac{17}{4} \\
\frac{-1365}{44} & \frac{1649}{88} & \frac{-21}{8} \\
\frac{17}{4} & \frac{-21}{8} & \frac{3}{8}
\end{array}\right) \cdot\left(\begin{array}{c}
6,05 \\
20,3 \\
75,6
\end{array}\right)=\left(\begin{array}{c}
11,9136 \\
-5,74318 \\
0,775
\end{array}\right)
$$

Estimated regression function: $\hat{y}=\hat{a}+\hat{b} x+\hat{c} x^{2}=11,9136-5,74318 x+0,775 x^{2}$

Note.

The solution $\boldsymbol{\beta}$ exists only if the inverse matrix $\boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1}$ exists, that means the matrix $\boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{X}$ is regular \Rightarrow its determinant is different from zero $\left(\left|\boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{X}\right| \neq 0\right)$.
Auxiliary calculations (symmetric matrixes):

$$
\boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{y}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5 \\
4 & 9 & 16 & 25
\end{array}\right) \cdot\left(\begin{array}{cccc}
0,5 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0,5
\end{array}\right) \cdot\left(\begin{array}{l}
3,5 \\
1,7 \\
1,3 \\
2,6
\end{array}\right)=\left(\begin{array}{l}
6,05 \\
20,3 \\
75,6
\end{array}\right)
$$

symmetric matrixes:

$$
\begin{aligned}
& \boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{X}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5 \\
4 & 9 & 16 & 25
\end{array}\right) \cdot\left(\begin{array}{cccc}
0,5 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0,5
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16 \\
1 & 5 & 25
\end{array}\right)=\left(\begin{array}{ccc}
3 & 10,5 & 39,5 \\
10,5 & 39,5 & 157,5 \\
39,5 & 157,5 & 657,5
\end{array}\right) \\
& \boldsymbol{X}^{T} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1}=\left(\begin{array}{ccc}
\frac{1165}{22} & \frac{-1365}{44} & \frac{17}{4} \\
\frac{-1365}{44} & \frac{1649}{88} & \frac{-21}{8} \\
\frac{17}{4} & \frac{-21}{8} & \frac{3}{8}
\end{array}\right)=\left(\begin{array}{ccc}
52,9545 & -31,0227 & 4,25 \\
-31,0227 & 18,7386 & -2,625 \\
4,25 & -2,625 & 0,375
\end{array}\right)
\end{aligned}
$$

Fig. 2. Graphic verification of accuracy of the regression function found.

- To estimate the dispersion of regression coefficients, it is first necessary to calculate the dispersion estimate of σ^{2} :

$$
\hat{\sigma}^{2}=\frac{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T} \boldsymbol{H}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})}{n-k}=\frac{1}{n-k}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T} \boldsymbol{H}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})
$$

where: $n=4$ - number of measurements,

$$
k=3 \text { - number of regression coefficient. }
$$

Then

$$
\begin{aligned}
& \hat{\sigma}^{2}=\frac{1}{4-3}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T} \boldsymbol{H}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T} \boldsymbol{H}^{-1}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}) \\
& \hat{\sigma}^{2}=\left(\begin{array}{r}
-0,0272727 \\
0,0409091 \\
-0,0409091 \\
0,0272727
\end{array}\right)^{T} \cdot\left(\begin{array}{cccc}
0,5 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0,5
\end{array}\right) \cdot\left(\begin{array}{r}
-0,0272727 \\
0,0409091 \\
-0,0409091 \\
0,0272727
\end{array}\right) \\
& \hat{\sigma}^{2}=0,00409091
\end{aligned}
$$

The estimator of the covariance matrix of $\hat{\boldsymbol{\beta}}$ (symmetric matrix) is:

$$
\hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\beta}}}=\hat{\sigma}^{2} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{H}^{-1} \boldsymbol{X}^{-1}
$$

$$
\hat{\Sigma}_{\hat{\beta}}=0,00409091 \cdot\left(\begin{array}{rrr}
\frac{1165}{22} & \frac{-1365}{44} & \frac{17}{4} \\
\frac{-1365}{44} & \frac{1649}{88} & \frac{-21}{8} \\
\frac{17}{4} & \frac{-21}{8} & \frac{3}{8}
\end{array}\right)=\left(\begin{array}{rrr}
0,216632 & -0,126911 & 0,017386 \\
-0,126911 & 0,076658 & -0,010738 \\
0,017386 & -0,010738 & 0,001534
\end{array}\right)
$$

Variances of the estimated regression coefficients lie on the main diagonal of the matrix and their values are:

$$
\begin{aligned}
& D(\hat{a})=0,216632 \\
& D(\hat{b})=0,0766581 \\
& D(\hat{c})=0,00153409
\end{aligned}
$$

4 Conclusion

The article presents the theory of the generalized linear model. The example shows the use of a diagonal covariance matrix in the model. The end points are measured with double precision.

Acknowledgement

The paper was supported by grant from Grant Agency of VEGA no. 1/0544/16.

References

[1] LAMOŠ, F., POTOCKÝ, R., Pravdepodobnost'a matematická štatistika. Vyd. ALFA, 1989. 342 s. ISBN 80-05-00115-0.
[2] WIMMER, G., Štatistické metódy v pedagogike. Nakl. GAUDEAMUS, 1993. 154 s. ISBN 80-7041-864-8.
[3] PALENČÁR, R., RUIZ, J. M., JANIGA, I., HORNÍKOVÁ, A., Štatistické metódy v skúšobných a kalibračných laboratóriách, Bratislava: Grafické štúdio Ing. Peter Juriga, 2001, ISBN 80-968449-3-8, 380 s.
[4] DIETRICH, E., SCHULZE, A., Statistical procedures for machine and process qualification. ASQ Quality Press, 1999, ISBN 0-87389-447-2, 396 s.
[5] MONTGOMERY, D.C., RUNGER, G.C., Applied statistics and probability for engineers. John Wiley \& Sons, Inc., 2002. 706 p. ISBN 0 471-20454-4.
[6] HEBÁK, P. - HUSTOPECKÝ, J. 1987. Vicerozmérné statistické metody s aplikacemi. Vyd. SNTL/ALFA, 1987. 452 s.
[7] JANIGA, I., GABKOVÁ, J., OMACHELOVÁ, M., Štatistické analýzy. Vydavatel'stvo Spektrum STU, 2017, ISBN 978-80-227-4704-2.

Current address

Janiga Ivan, doc., RNDr., PhD.

Institute of Mathematics and Physics
Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava
Nám. slobody 17, 81231 Bratislava, Slovakia
E-mail: ivan.janiga@stuba.sk

Gabková Jana, RNDr., PhD.

Institute of Mathematics and Physics
Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava
Nám. slobody 17, 81231 Bratislava, Slovakia
E-mail: jana.gabkova@stuba.sk

