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1 Introduction

In practice, there are many technical problems that are mathematically modeled as Model 1
Y. =Y(x)=af(x)+af,(x)+.+a f(x)+e, i=1 2..,n (1)

where Y;, i=1 2,..,n are random variables, whose realizations Y,, Y,,...Y, are the

measurement results.
These results depend on the function a, f,(x)+a,f,(x)+...+a,f, (x), known and non-random

effects X, X,,...,X, and k parameters &,,4a,,...,a,, whose values are unknown; ¢, is a random
error of the i-th measurement. Model 1 is called a linear model (linear in parameters).

Here are two examples from practice:

1. It is known from theory that in a certain range of temperatures x, the extension of the y
copper pipe is a linear function of the temperature passing thru the null point.
Measurements in this area can be written using a linear model

Y, =aXx+¢, i=1 2,.,n
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2. Fuel consumption in a certain area of a car's speed is a quadratic function of speed.
Therefore, the speed measurement x in this area can be described by a linear model

Y =a +a,X +a3Xi2 +e, 1=1 2,...,n

2 Generalized linear model
Model 1 can be generalized and expressed in matrix form. We supposed, that

e=(e, €, ...e)" 2)

is a vector of random errors, which is assumed to have the n-dimensional normal
distribution with zero means:

E(e)=0, i=1 2,..,n 3)
and
X =2, =0’H (4)

is a symmetric matrix of the type nxn called covariance matrix. H is a matrix of weights
with elements h;, i,j=12,...,n. The variance of the random variable Y; is
a’h, =cov(Y,,Y,) = o7 and the covariance between variables Y, and Y, is o’h; =cov(Y,,Y;),

i # j. Now we can write a generalized linear model in matrix form as Model 2 as follows:
Y=Af+e, X, =0'H (5)

where Y =(Y,,Y,,...,Y.)" is a known measurement vector,

A is known experimental design matrix of type nxk,

B=(a, a,.., a)" isa vector of unknown regression coefficients,

e=(e, &, .., &) isvector of random errors and

2\, is a covariance matrix.

Model 2 can be written as an ordered triple as follows:

(Y,AB,0°H) (6)
Point estimators in Model

An estimator ﬂ of the regression coefficients vector g is obtain by the generalized least
squares method as the minimum of quadratic form
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e'H'e=(Y -AB) H (Y - A4p) = f(B)

The quadratic form is adjusted to f(B)=Y'H'Y-2Y'H 'AB+B"A'H"AB , and by

deriving is to get %f‘p =—2ATHY +2ATH'Ag.

It can be proved that the least squares estimator of ﬂ is

p= ATH'A  AHY )
This is the minimum variance unbiased estimator (MVUE) of each component a; of the
regression coefficients vector g . Furthermore, it can be proved that the covariance matrix of

pis

=0 ATH'A (8)

and the unbiased estimator of variance o’ is

When (9) is inserted into (8) we get the estimator of the covariance matrix of ﬂ
£,=6° X'H'X ~ (10)

It is often necessary to estimate the various linear combinations of the parameter vector,
which we call parametric functions and write in matrix form

P A=pa+Pp,a+ ..+ p a (11)

where p' =(p, P,» ... P,) and g’ =(a,4a,,...,a,).
Let us consider the linear model (Y, Xg,0°H) and the parametric function p'f. It can be

proved that the minimum variance unbiased estimator of the parametric function is

P h=p" X'H'X X'HY (12)

and the variance of the parametric function is
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A -1
D(p'p)=0c’p" X'H'X p (13)
When (9) is inserted into (13) we get the estimator of D(p" )
D(p'A)=6°p" X'H?X " p (14)

Assume that the vector Y in the linear models (Y, Xf,c>H) has n-dimensional normal
distribution then it is valid:

T T
PP F N (15)
\/asz XTHX " p

(Y = XB) H (Y - XB) ~ *(n—K) (16)

It can be proved that these two random variables are independent.
Then from the definition of t-distribution and relationship (9) it follows that

Tp T
PP F _ i(n-k) (17)
\/&ZpT XTHX P

From the last statement, confidence intervals can be derived.

Confidence Intervals in Model 2

It is true that the 100(1—«) % two-sided confidence interval for the parametric function p'f
IS

pT/}J_rt(n—k,oz)\/(Y _Xﬂ);lj:(Y_Xﬂ) P XTH'X p (18)

Using (18), it can be specify the interval estimate of any parameter (e.g. a = p'f, where

p"=( 0, ..., 0)) and the functional value at any point.

When calculating estimates of the functional values at several points, we get the confidence
band around (theoretical) function of & f,(x)+a,f,(x)+...+a f (X). However, it cannot

be interpreted this band in such a way that it in confidence 1—« covers the entire theoretical
function.

The confidence band for the entire function a,f,(x)+a,f,(x)+...+a f (X) covering this
function with confidence 1—¢« is given by the relationship
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pTﬁi,/kF(k,n—k,a)\/(Y _Xﬂ)?_’;(Y—Xﬂ) pXTH'X ' p (19)

where F(k,n—k,«) is critical value of F—distribution with degrees of freedom k a n—k .

Tests of Hypotheses in Model 2

It is supposed to test the hypothesis H, that the actual value of the parametric function is

equal to the real number q versus the alternative H, that it is not equal to this number. This
hypothesis can be written as follows

Ho:p'B=qvs. H:p g=q (20)

The test statistic, which has the t-distribution with n—k degrees of freedom under the
hypothesis H, validity, is given by the relation

T n —
T = — p/)’Aq (21)
J(Y—Xﬂ) H (Y =XB) v sy )
n—k
The null hypothesis in (20) is rejected at the level of significance « when
[T|>t(n—k, a) (22)

These tests can be used to test arbitrary coefficient of the parameter vector, a functional value
at any point, and so on. It is often used to test the statistical significance of individual
regression coefficients. In this case, the hypothesis

H, a=0 (23)
is tested.

3 Example

It is given 4 independent measurements y. with double precision at extreme points that are
shown in Tab. 1.

y, 35 1.7 13 2.6

Table 1. Independent measurements.
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Assuming that the functional dependence between x, y is quadratic, we estimate the regression

coefficients and their variance.
Solution

Since the functional dependence between X, y is quadratic, we are looking for the regression
function §=4a+bx+6x* =ax’+bx+6x*. It is necessary to calculate (estimate) unknown

regression coefficients &, b, C.

« For individual measured values y; are :

¥

!
i
1\
N

N R
S
Xl Xi Vi |

y=a+bx+ex?/
r
s
/164
e
Ed

-
-

1

m A\

3

Fig. 1. Graphic individual measured values ;.

in the form of equations:

y, =Y +g, 1=1..,4

yo=a-x°+b-x +¢-x2+¢g, i=1,..
35=4-2"+b-2'+¢-22 +¢,
1,7=4-3+b-3'+¢-3% +¢,
1,3=é-4°+5-41+é-42+g3
2,6=4-5"+b-5 +¢-52 +¢,

X

in matrix form:

y = X x
4 35) (12 4
17| (13 9

= X
13 14 16

2,6 1525

where: y — measurement vector, (Y, X8,0°H),

X — design matrix (of experiment),
& — vector of random errors (vector of deviations between measured and estimated

« Covariance matrix of vectors y or g is: 2, =%, =c’H =0"

where: o’ is unknown dispersion factor,

B+ e

o> O
+

o

2000
0100
10010
0002

H is matrix of weights (h, = h,, =2 — double inaccuracy at extreme points).

~
A A

« Regression coefficients &,b,¢ are estimated by the generalized least squares method
(GLSM) — the sum of squares of measurement errors is required to be minimal.



For random errors ¢; of measurement y; is valid:

in the form of equations: in matrix form:
gi = yi _yi’ i =1,..., 4
e = Yy - X x p

g=Y— ax +b-x+¢-x*, i=1..4

& 3,5 12 4 a
£=35-4-2°+b-2"+¢.2° e| 17| (13 9|,
£=17- 4-3+b-3' +¢-3 g [13][1416),

e,) \26) 1525

It is required, that " H ‘e = (Y - XB)" H (Y — X8) = min .
Here it should be noted that

o known: y, X —design matrix, H — matrix of weights,
« unknown: g =[a,b,c]" —wants to be estimated.

Therefore
P(B) = (Y - XB)" H (Y - XP)
o([4,b, €T) = (Y — XB)" H (Y - XB)

Minimize &¢"H e actual means to find a local minimum vector [4, b, ¢]" of the function

P(B).

The function ¢(f) acquires a minimum at a stationary point [4, ), ¢]" that is a solution to a
system of normal equations

00 _ o 00B) _y, 00B) _, 20B) _,
op 04 ab o6 '

By solving the system of normal equations an estimate of the individual regression
coefficients is obtained:

A T _
p=4ab¢ = XH'X - X"H
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1165 —1365 17
a 22 4 4 | 605\ (11,9136
p=lb|=| 22 1098 2l o032 | -5,74318
¢ 44 8 8 ;6] | 0775
17 21 3 : :
4 8 8

Estimated regression function: ¥ =4+ bx +6x? =11,9136 —5, 74318X + 0, 775>

Note.
The solution g exists only if the inverse matrix XTH™X " exists, that means the matrix

XTH™X s regular = its determinant s different from zero (|X"H X | 0).

Auxiliary calculations (symmetric matrixes):

05 0 0 O 3,5
11 1 1 6,05
Tyy-1 1 0 O 17
X'Hy=l2 3 4 5 . =|20,3
01 O 13
4 9 16 25 75,6
0 0 05/\2,6
symmetric matrixes:
05 00 O 1
11 1 1 3 10,5 39,5
— 1 0 O 1
X'H*X=2 3 4 5 . =|10,5 39,5 1575
01 O 1 16
4 9 16 25 39,5 157,5 657,5
0 0 05/11 25
1165 -1365 17
22 44 4 52,9545 —310227 425
XTHx to| 1365 1649 —2li b 4 0007 187386 —2.625
44 88 8 4.25 2,625 0,375
E _21 § y T4, I
4 8 8
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Fig. 2. Graphic verification of accuracy of the regression function found.

« To estimate the dispersion of regression coefficients, it is first necessary to calculate the
dispersion estimate of &°:

Of\_ZZ(y_Xﬂ) H (y_Xﬂ)Z 1 (y_Xﬂ)TH—l(y_Xﬂ)
n—k n—k

where: n = 4 — number of measurements,
k = 3 — number of regression coefficient.

Then

5 = ﬁ (y—XB) H*(y— XB) = (y— XB) H*(y - XPB)

-0,0272727Y (0,5 0
., | 0,0409091| [ 0 1
~| —0,0400001| | 0 0
0,0272727) L 0 0

0 ) (-0,0272727
0 || 0,0409091
0 || -0,0409091

0,5/ | 0,0272727

o » O O

6% =0,00409091

The estimator of the covariance matrix of ﬂ (symmetric matrix) is:

£.=6° X'H'X -

1165 1365 17
123265 1;‘29 ‘;1 0,216632 -0,126911 0,017386
£, =0,00409091- _44 5 _8 —| —0,126911 0,076658 —0,010738
7 2 3 0,017386 -0.010738  0,001534
4 8 8
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Variances of the estimated regression coefficients lie on the main diagonal of the matrix and
their values are:

D(4) =0, 216632
D(b) = 0,0766581

D(c) = 0,00153409
4  Conclusion

The article presents the theory of the generalized linear model. The example shows the use of
a diagonal covariance matrix in the model. The end points are measured with double
precision.
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