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Abstract. We introduce (scalar) stochastic differential equation of second order
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1 Introduction

In this article, we are improving and extending some previous results on the parameter
estimation for stochastic differential equation of second order, which were previously pub-
lished in [3] and [2]. Namely, we have found another family of estimators (ãt, b̃t), we have
proved their asymptotic normality and we have implemented them in the program R.

The following section introduces the stochastic differential equation for the harmonic
oscillation, its rewriting and its solution, that is the Ornstein–Uhlenbeck process. Using
the observation of the trajectory {Xx0(t), 0 ≤ t ≤ T} and ergodicity of the Ornstein–
Uhlenbeck process, two types of strong constistent estimators of unknown parameters are
proposed. The proof of Theorem 1 may be found in [4]. The proof of Lemma 1 is only a
matter of computation. We also mention the asymptotic normality of the estimators âT
and b̂T , which was studied in [2].

The asymptotic normality of the estimators ãT and b̃T is proved in the third section. We
are using Itô’s formula to obtain different formulae for the processes YT =

∫ T
0
|Xx0

1 (t)|2 dt
and HT =

∫ T
0
|Xx0

2 (t)|2 dt (on which the estimators ãT and b̃T are based on) and then
central limit theorem for the stochastic integral (which may be found in [5]). The results
are summarized in Theorem 3.

In the section 4, we introduce the implementation of all estimators and on one particular
example, we compare the two methods both graphically and numerically.
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2 Parameter estimation and strong consistency

Consider the following (scalar) stochastic differential equation

ẍ+ 2aẋ+ bx = σβ̇(t), (1)

with initial values X(0) = x1 and Ẋ(0) = x2. Let a > 0, b > 0 be unknown real
parameters, σ > 0 is known and let β̇(t) be the formal time derivative of the standard
Brownian motion.

We may rewrite this equation in the form

dX(t) = AX(t) dt+ Φ dB(t), X(0) = x0, (2)

if we set

X(t) =

(
X1(t)
X2(t)

)
∈ R2, A =

(
0 1
−b −2a

)
∈M2×2, Φ =

(
0 0
0 σ

)
∈M2×2,

B(t) =

(
0
β(t)

)
∈ R2, x0 =

(
x1
x2

)
∈ R2,

where M2×2 stands for the space of all 2× 2 matrices with real entries, equipped with the
operator norm ‖ · ‖L(R2).

If we denote S(t) := eAt a strongly continuous semigroup on R2, then the solution
(Xx0(t), t ≥ 0) to (2) is defined by the mild form

Xx0(t) = S(t)x0 + Z(t), t ≥ 0, (3)

where (Z(t), t ≥ 0) is the convolution integral

Z(t) =

∫ t

0

S(t− u)Φ dB(u). (4)

The solution (Xx0(t), t ≥ 0) to the equation (2) is called the Ornstein–Uhlenbeck process.

Theorem 1. If the semigroup (S(t), t ≥ 0) is exponentially stable, i.e., there exist con-
stants M > 0 and ρ > 0 such that for all t ≥ 0

‖S(t)‖L(R2) ≤Me−ρt, (A1)

then there is a Gaussian centered limiting measure µ(a,b)
∞ = N(0, Q

(a,b)
∞ ) for (Xx0(t), t ≥ 0),

such that
w∗ − lim

t→∞
µx0t = µ(a,b)

∞

for each initial condition x0 ∈ R2, where µx0t = Law(Xx0(t)) and Law(·) denotes the
probability distribution. The covariance matrix Q(a,b)

∞ has the following form

Q(a,b)
∞ =

∫ ∞
0

S(t)ΦΦ>S>(t) dt. (5)

If a2 < b, then the real parts of eigenvalues of matrix A are negative and the condition (A1)
holds true. If we denote α = −a, β =

√
b− a2, then we may write λ1 = α+iβ, λ2 = α−iβ.
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Lemma 1. The fundamental system (S(t), t ≥ 0) for the equation (1) has the following
form

S(t) =

 eαt
(

cos(βt)− α
β

sin(βt)
)

1
β
eαt sin(βt)

eαt
(
−β − α2

β

)
sin(βt) 1

β
eαt(α sin(βt) + β cos(βt))

 .

The covariance matrix Q(a,b)
∞ of the limiting measure µ(a,b)

∞ equals to

Q(a,b)
∞ =

∫ ∞
0

S(t)ΦΦ>S>(t) dt =

∫ ∞
0

σ2

β2

(
q11(t) q12(t)
q21(t) q22(t)

)
dt =

σ2

β2

(
β2

4ab
0

0 β2

4a

)

= σ2

(
1

4ab
0

0 1
4a

)
, (6)

where

q11(t) = e2αt sin2(βt),

q12(t) = q21(t) = e2αt sin(βt)(α sin(βt) + β cos(βt)),

q22(t) = e2αt(α sin(βt) + β cos(βt))2.

Remark 1. In the cases of a2 > b and a2 = b, the eigenvalues of matrix A are also
negative and the condition (A1) also holds true. The formulae for the fundamental system
(S(t), t ≥ 0) are different, but the resulting formulae for the covariance matrix Q

(a,b)
∞

coincide. Hence the assumption a2 < b may be omitted.

For the parameter estimation, we are interested in the trace of the covariance matrix
Q

(a,b)
∞ . From the formula (6), it follows that

TrQ(a,b)
∞ =

b+ 1

4ab
σ2. (7)

Since the Ornstein–Uhlenbeck process X(t) is ergodic in R2 (see Example 2.1. in [7]), we
may use Birkhoff’s theorem. Namely

lim
T→∞

1

T

∫ T

0

‖Xx0(t)‖2R2 dt =

∫
R2

‖y‖2R2 dµ(a,b)
∞ (y) = TrQ(a,b)

∞ , (8)

for any initial contidion x0 ∈ R2 (see Theorem 4.9. in [6]).

If we denote IT := 1
T

∫ T
0
‖Xx0(t)‖2R2 dt, then (based on (7)) some strongly constistent

estimators of parameters a and b may be proposed. If we know the true value of the
parameter b, then the strongly consistent estimator of the parameter a is

âT =
b+ 1

4bIT
σ2. (9)

Similarly, if we know the true value of the parameter a, then

b̂T =
σ2

4aIT − σ2
(10)

is the strong consistent estimator of the parameter b.

In [2], we have also proved the asymptotic normality of these estimators.

489



Theorem 2. The estimators âT and b̂T are asymptotically normal, i.e.,

Law
(√

T (âT − a)
)
→ N

(
0,

4a3

b(b+ 1)2
+ a

)
, T →∞, (11)

Law
(√

T
(
b̂T − b

))
→ N

(
0, 4ab+

b2(b+ 1)2

a

)
, T →∞. (12)

The estimators âT and b̂T are indeed very easily implemented, but they have one major
disadvantage: We have to know the true value of the other parameter. However another
family of estimators (ãT , b̃T ) may be proposed, which do not possess this disadvantage.
Since

‖x‖2R2 = |x1|2 + |x2|2, ∀x =

(
x1
x2

)
∈ R2,

the integral in (8) may be split into two parts

IT =
1

T

∫ T

0

‖Xx0(t)‖2R2 dt

=
1

T

∫ T

0

|Xx0
1 (t)|2 dt+

1

T

∫ T

0

|Xx0
2 (t)|2 dt

=: YT +HT , (13)

where Xx0(t) = (Xx0
1 (t), Xx0

2 (t))> ∈ R2 is the solution to the equation (2). The formula
(7) for the TrQ

(a,b)
∞ may also be split into two parts. Indeed, the two parts in (13) converge

to their corresponding limits individually, since it is just using the Birkhoff’s theorem to
the individual components, i.e.,

lim
T→∞

YT = lim
T→∞

1

T

∫ T

0

|Xx0
1 (t)|2 dt =

σ2

4ab
, (14)

lim
T→∞

HT = lim
T→∞

1

T

∫ T

0

|Xx0
2 (t)|2 dt =

σ2

4a
. (15)

Based on these convergences, we may introduce new family of strongly consistent estima-
tors ãT and b̃T

ãT =
σ2

4HT

, (16)

b̃T =
HT

YT
. (17)

3 Asymptotic normality of estimators ãT and b̃T

In this section, we show asymptotic normality of estimators (16) and (17), i.e., the weak
convergence of

√
T (ãT − a) or

√
T
(
b̃T − b

)
to a Gaussian distribution.

Let us start with the definition of operators P1 : R2 → R2 and P2 : R2 → R2:

P1x = P1

(
x1
x2

)
=

(
b 0
0 1

)(
x1
x2

)
, ∀x =

(
x1
x2

)
∈ R2, (18)

P2x = P2

(
x1
x2

)
=

(
b+ 4a2 2a

2a 1

)(
x1
x2

)
, ∀x =

(
x1
x2

)
∈ R2. (19)

490



Let us denote 〈·, ·〉 and ‖ · ‖, the Euclidean scalar product and the norm in R2. The
properties of these two matrices are summarized in the following Lemma 2.

Lemma 2. The matrices P1 and P2 are symmetric and

〈P1x,Ax〉 = −2a|x2|2, ∀x =

(
x1
x2

)
∈ R2, (20)

〈P2x,Ax〉 = −2ab|x1|2, ∀x =

(
x1
x2

)
∈ R2. (21)

Proof. The symmetry of matrices P1 and P2 is evident. For every x = (x1, x2)
> ∈ R2, we

have

〈P1x,Ax〉 =

〈(
b 0
0 1

)(
x1
x2

)
,

(
0 1
−b −2a

)(
x1
x2

)〉
=

〈(
bx1
x2

)
,

(
x2

−bx1 − 2ax2

)〉
= bx1x2 − bx1x2 − 2ax22
= −2a|x2|2

and

〈P2x,Ax〉 =

〈(
b+ 4a2 2a

2a 1

)(
x1
x2

)
,

(
0 1
−b −2a

)(
x1
x2

)〉
=

〈(
bx1 + 4a2x1 + 2ax2

2ax1 + x2

)
,

(
x2

−bx1 − 2ax2

)〉
= bx1x2 + 4a2x1x2 + 2ax22 − 2abx21 − 4a2x1x2 − bx1x2 − 2ax22
= −2ab|x1|2.

We will also need the alternative representations for the processes YT and HT , which were
defined by (13).

Lemma 3. The process YT admits the following representation

YT =
1

T

∫ T

0

|Xx0
1 (t)|2 dt

= − 1

4abT
(〈P2X

x0(T ), Xx0(T )〉 − 〈P2x0, x0〉) +
1

2abT

∫ T

0

〈P2X
x0(t),Φ dB(t)〉+

σ2

4ab
.

(22)

The process HT admits the following representation

HT =
1

T

∫ T

0

|Xx0
2 (t)|2 dt

= − 1

4aT
(〈P1X

x0(T ), Xx0(T )〉 − 〈P1x0, x0〉) +
1

2aT

∫ T

0

〈P1X
x0(t),Φ dB(t)〉+

σ2

4a
.

(23)
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Proof. Define the function g1 : R2 → R by

g1(x) = 〈P1x, x〉 , ∀x ∈ R2. (24)

The application of Itô’s formula to the function g1(Xx0(t)) yields

dg1(X
x0(t)) = 2 〈P1X

x0(t), dXx0(t)〉+
1

2
Tr
(
2P1ΦΦ>

)
dt. (25)

The second term may be simplified via following calculation

1

2
Tr
(
2P1ΦΦ>

)
= Tr

(
0 0
0 σ2

)
= σ2.

The expression (25) may be now written in the following way

dg1(X
x0(t)) = 2 〈P1X

x0(t),AXx0(t)〉 dt+ 2 〈P1X
x0(t),Φ dB(t)〉+ σ2 dt

= −4a|Xx0
2 (t)|2 dt+ 2 〈P1X

x0(t),Φ dB(t)〉+ σ2 dt.

After integrating previous formula over the interval (0, T ) and after some algebraic oper-
ations, we will arrive at (23).

Similarly, if we define function g2 : R2 → R by

g2(x) = 〈P2x, x〉 , ∀x ∈ R2 (26)

and apply Itô’s formula to the function g2(Xx0(t)), we will obtain

dg2(X
x0(t)) = 2 〈P2X

x0(t), dXx0(t)〉+
1

2
Tr
(
2P2ΦΦ>

)
dt. (27)

Since the second term equals to

1

2
Tr
(
2P2ΦΦ>

)
= Tr

(
0 2aσ2

0 σ2

)
= σ2,

the formula (27) and Lemma 2 yield

dg2(X
x0(t)) = 2 〈P2X

x0(t),AXx0(t)〉 dt+ 2 〈P2X
x0(t),Φ dB(t)〉+ σ2 dt

= −4ab|Xx0
1 (t)|2 dt+ 2 〈P2X

x0(t),Φ dB(t)〉+ σ2 dt.

After integrating previous formula over the interval (0, T ) and after some algebraic oper-
ations, we will arrive at (22).

3.1 Asymptotic normality of the estimator ãT

Using formula (16) for the estimator ãT and formula (23) for HT , we are able to compute
the following
√
T (ãT − a) =

√
T

(
σ2

4HT

− a
)

=
√
T
σ2 − 4aHT

4HT

=

√
T

4HT

(
1

T
(〈P1X

x0(T ), Xx0(T )〉 − 〈P1x0, x0〉)−
2

T

∫ T

0

〈P1X
x0(t),Φ dB(t)〉

)
=

1

4HT

1√
T

(〈P1X
x0(T ), Xx0(T )〉 − 〈P1x0, x0〉)−

1

2HT

1√
T

∫ T

0

〈P1X
x0(t),Φ dB(t)〉 .

(28)
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Using Chebyshev’s inequality, it is easy to show, that the first term 1√
T

(〈P1X
x0(T ), Xx0(T )〉

− 〈P1x0, x0〉) → 0 in probability as T →∞. We may also write

Z1(T ) :=
1√
T

∫ T

0

〈P1X
x0(t),Φ dB(t)〉 =

1√
T

∫ T

0

2∑
n=1

〈P1X
x0(t), en〉 d 〈en,ΦB(t)〉

=
σ√
T

∫ T

0

〈P1X
x0(t), e2〉 dβ(t) =

σ√
T

∫ T

0

Xx0
2 (t) dβ(t), (29)

where we have used that ΦB(t) = (0, σβ(t))>.

By the central limit theorem for the stochastic integral (see Proposition 1.22. in [5]),
Z1(T ) converges weakly to a Gaussian distribution with a zero mean and variance given
by

lim
T→∞

σ2

T

∫ T

0

(Xx0
2 (t))2 dt = σ2 E (X2(∞))2 = σ2 Var (X2(∞)) =

σ4

4a
, (30)

where X(∞) = (X1(∞), X2(∞))> is an R2–valued Gaussian random variable with zero
mean and covariance matrix Q(a,b)

∞ . (It has the invariant distribution µ(a,b)
∞ .)

Since the multiplicative factor − 1
2HT

of Z1(T ) in (28) converges to − 2a
σ2 as T → ∞, we

have the following results

Law (Z1(T ))→ N

(
0,
σ4

4a

)
, T →∞, (31)

Law
(√

T (ãT − a)
)
→ N (0, a) , T →∞. (32)

3.2 Asymptotic normality of the estimator b̃T

Using formula (17) for the estimator b̃T and Lemma 3 for representation of YT and HT ,
we are able to compute the following

√
T
(
b̃T − b

)
=
√
T

(
HT

YT
− b
)

=

√
T

YT
(HT − bYT )

=

√
T

YT

(
− 1

4aT
(〈P1X

x0(T ), Xx0(T )〉 − 〈P1x0, x0〉) +
1

2aT

∫ T

0

〈P1X
x0(t),Φ dB(t)〉

+
1

4aT
(〈P2X

x0(T ), Xx0(T )〉 − 〈P2x0, x0〉)−
1

2aT

∫ T

0

〈P2X
x0(t),Φ dB(t)〉

)
=

1

4aYT

1√
T

(〈(P2 − P1)X
x0(T ), Xx0(T )〉 − 〈(P2 − P1)x0, x0〉)

− 1

2aYT

1√
T

∫ T

0

〈(P2 − P1)X
x0(t),Φ dB(t)〉 . (33)

Similarly as above, the term

1√
T

(〈(P2 − P1)X
x0(T ), Xx0(T )〉 − 〈(P2 − P1)x0, x0〉)→ 0
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in probability as T →∞. We may also compute

Z2(T ) :=
1√
T

∫ T

0

〈(P2 − P1)X
x0(t),Φ dB(t)〉

=
1√
T

∫ T

0

2∑
n=1

〈(P2 − P1)X
x0(t), en〉 d 〈en,ΦB(t)〉

=
σ√
T

∫ T

0

〈(P2 − P1)X
x0(t), e2〉 dβ(t) =

2aσ√
T

∫ T

0

Xx0
1 (t) dβ(t), (34)

since 〈(P2 − P1)X
x0(t), e2〉 = 2aXx0

1 (t). Similarly to Z1(T ), Z2(T ) also converges weakly
to a Gaussian distribution with a zero mean and variance given by

lim
T→∞

4a2σ2

T

∫ T

0

(Xx0
1 (t))2 dt = 4a2σ2 E (X1(∞))2 = 4a2σ2 Var (X1(∞)) =

aσ4

b
. (35)

The multiplicative factor − 1
2aYT

of Z2(T ) in (33) converges to − 2b
σ2 as T → ∞, which

brings us to the following results

Law (Z2(T ))→ N

(
0,
aσ4

b

)
, T →∞, (36)

Law
(√

T
(
b̃T − b

))
→ N (0, 4ab) , T →∞. (37)

We may summarize the results in the following theorem.

Theorem 3. The estimators ãT and b̃T are asymptotically normal, i.e.,

Law
(√

T (ãT − a)
)
→ N (0, a) , T →∞,

Law
(√

T
(
b̃T − b

))
→ N (0, 4ab) , T →∞.

The family of estimators (ãT , b̃T ) is also better than the family (âT , b̂T ) in the sense that
its limiting variances are smaller. Indeed, if we compare (32) to (11), we see that the
limiting variance of âT is a + 4a3

b(b+1)2
and the limiting variance of ãT is just a. Similarly,

if we compare (37) to (12), we recognize that the limiting variance of b̂T is 4ab+ b2(b+1)2

a

and the limiting variance of b̃T is just 4ab. The estimators (ãT , b̃T ) are strict upgrade to
the estimators (âT , b̂T ).

4 Implementation and statistical evidence

We have generated a trajectory of the solution to the stochastic differential equation (1)
by Euler’s method (see for example [1]). We have chosen T = 100 (the length of the time
interval), ∆t = 0, 01 (the mesh of the partition), x1 = 1, x2 = 1 (the initial values), a = 1,
b = 4 and σ = 1. The implementation in R code is as follows.

T <- 100
N <- 10000
Delta <- T/N
t <- seq(0, T, length = N+1)
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X <- numeric(N+1)
Y <- numeric(N+1)
X0 <- 1
Y0 <- 1
a <- 1
b <- 4
sigma <- 1
X[1] <- X0
Y[1] <- Y0
set.seed(123)
Z <- rnorm(N)
for (i in 2:(N+1)){
X[i] <- X[i-1] + Y[i-1]*Delta
Y[i] <- Y[i-1] + (- b*X[i-1] - 2*a*Y[i-1])*Delta + sigma*Z[i-1]*sqrt(Delta)
}
plot(t, X, type = "l")
plot(t, Y, type = "l")

The following figure shows the solution to the equation (1) (that is the process Xx0
1 (t))

and its derivative (that is the process Xx0
2 (t)).
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2 (t).

Fig. 1

The implementation of estimators âT and b̂T is described by the following code.

I <- numeric(N+1)
ahat <- numeric(N+1)
bhat <- numeric(N+1)
I[1] <- X[1]ˆ2 + Y[1]ˆ2
ahat[1] <- sigmaˆ2*(b+1)/(4*b*I[1])
bhat[1] <- sigmaˆ2/(4*a*I[1] - sigmaˆ2)
for (i in 2:(N+1)){
I[i] <- (I[i-1]*(i-1) + X[i]ˆ2 + Y[i]ˆ2)/i
ahat[i] <- sigmaˆ2*(b+1)/(4*b*I[i])
bhat[i] <- sigmaˆ2/(4*a*I[i] - sigmaˆ2)
}

The value of the statistic IT (on which the estimators âT and b̂T are based on (see (8)))
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equals to IT = 0, 3233, while the trace of the matrix Q
(a,b)
∞ equals to Q(a,b)

∞ = b+1
4ab
σ2 =

0, 3125. The estimators of a and b are âT = 0, 9667, b̂T = 3, 4122 and their time evolution
is shown in the following Figure.
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(b) The estimator b̂t.

Fig. 2

The implementation of formulae from Theorem 2 is as follows.

ahatnormal <- sqrt(t)*(ahat - a)
bhatnormal <- sqrt(t)*(bhat - b)
vara <- a + (4*aˆ3)/(b*(b+1)ˆ2)
2*sqrt(vara)
varb <- 4*a*b + (bˆ2*(b+1)ˆ2)/a
2*sqrt(varb)

The limiting variance from the formula (11) equals to 1, 04 and the limiting variance from
the formula (12) equals to 416. The Figure 3 shows the progress of variables

√
t(ât − a)

and
√
t(b̂t− b), where boundaries for "the rule of 2σ" are depicted. (Normally distributed

random variable X ∼ N(µ, σ2) is realized in the interval (µ − 2σ, µ + 2σ) with 95, 45%
probability.)
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Fig. 3

All the pictures seem very satisfactory, however let us introduce the estimators ãT and
b̃T . Their implementation is also very simple.
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I2X <- numeric(N+1)
I2Y <- numeric(N+1)
atilde <- numeric(N+1)
btilde <- numeric(N+1)
I2X[1] <- X[1]ˆ2
I2Y[1] <- Y[1]ˆ2
atilde[1] <- sigmaˆ2/(4*I2Y[1])
btilde[1] <- I2Y[1]/I2X[1]
for (i in 2:(N+1)){
I2X[i] <- (I2X[i-1]*(i-1) + X[i]ˆ2)/i
I2Y[i] <- (I2Y[i-1]*(i-1) + Y[i]ˆ2)/i
atilde[i] <- sigmaˆ2/(4*I2Y[i])
btilde[i] <- I2Y[i]/I2X[i]
}

The results are as follows

YT = 0, 0622,
σ2

4ab
= 0, 0625,

HT = 0, 2611,
σ2

4a
= 0, 25,

ãT = 0, 9576, b̃T = 4, 1964.

Time evolution of the estimators ãT and b̃T is shown in the following figure.

0 20 40 60 80 100

0
.4

0
.6

0
.8

1
.0

t

a
ti
ld

e

(a) The estimator ãt.
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Fig. 4

The implementation of the formulae (32) and (37) is similar as above. Let us recall, that
the limiting variance of the estimator ãT is a = 1 and limiting variance of the estimator b̃T
is 4ab = 16. The following figure shows the progress of variables

√
t(ãt−a) and

√
t(b̃t− b)

as well as the 95, 45% confidence interval.

>From the previous (concrete) simulation it follows, that although the estimator ãT is
(locally) worse than the estimator âT , the estimator b̃T is much more better than b̂T . After
running many and many simulations (also with different parameters a, b, σ, x1, x2, T , ∆t),
we claim that all estimators have their derived properties and that our implementation is
correct and fully functional.
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Fig. 5

5 Conclusion

We have introduced the stochastic differential equation of second order and its solution,
which is Ornstein–Uhlenbeck process. Based on ergodicity, two families of the strong
consistent estimators of unknown parameters have been derived.

In the second part of the paper, we have proved the asymptotic normality of the family
(ãT , b̃T ) and we have shown that this family of estimators is better than the family (âT , b̂T )
(e.g., it is possible to use them without any knowledge of the true value of the other
parameter and their limiting variances are smaller).

The third part of the paper presents the implementation of used methods and their
comparison on one concrete example.
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