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Abstract. It is well-known that a system of linear algebraic equations need not have a 
solution. There is a way allowing to define a solution to such a system which is not 
dependent on the properties of the linear operator (injective, surjective) represented by 
the matrix of the system. This leads in special case to the known Least Square 
Method, however here in rather unusual point of view. 
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1 Basic Notions and Facts 

In this section we recall some basic notions and facts and accept suitable notation. Suppose 
we have a linear mapping (operator)  

mnA : , (1) 

where n  is the n-th dimensional Euclidean space. This mapping is represented by a matrix 
 ijaA  of the type  nm, . For our purposes it is not necessary to distinguish strictly 

between the linear operator and its matrix representation. So we will use the letter A instead of 
A. and the word operator may be exchanged by the word matrix whenever it occurs in the
sequel. We will consider the operator equation

bAx  , (2) 

which is in fact the system of m linear algebraic equations for n unknowns  ni x  ,,  , 1  .

Two important sets are connected with the operator (1). They are the kernel and the range of 
the operator (1): 
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     AxyxyAoAxxA nm
m

n  :ran    ,:ker .  

 

The symbol mo  is used for the zero vector of the space m . The Euclidean space is equipped 

by the inner product which is here taken in general sense, see [5] (page 110). It is not 
necessary to consider the standard Euclidean inner product. An inner product of the vectors x 
and y is usually denoted  yx,  and to distinguish among the inner products in different 

Euclidean spaces we write  kyx,  for the inner product in k . The vector norm is derived 

from the inner product in usual way:  xxx , . We distinguish again among the norms in 

the different Euclidean spaces by the index. The inner product allows to define the so called 
adjoint operator (conjugate transpose) of A 
 

 nmA :*  (3) 
 
by the equality 

    nm yAxyAx  ,,   

 

for any mn yx   , . Its existence and uniqueness follow from Riesz representation 

theorem, see [5](page 237). 
 
In the end of this section let us recall the relations among kernels and ranges of the operator 
(1) and its adjoint (3): 
 

   AAAA mn ker ran    ,ran ker . (4) 

 
The direct decompositions (4) are even orthogonal. It means for example that any vector 

nx   can be expressed in the form wvx  , where moAv  , uAw   for some mu   

and   0, nwv . The vectors v and w are determined by x uniquely. 

 
 
2 Generalized Solution to the System of Linear Algebraic Equations 
 
We define 
 

     2
,

mm bAxbAxbAxxF  . (5) 

 
The function (5) is called the price functional (terminology used in [1]). It is a nonnegative 

function nF : . We will consider the problem of its minimum. The generalized 
solution to the system of linear algebraic equations (2) is any point at which the price 
functional (5) achieves its minimum. 
 
Proposition 2.1  
There is at least one point at which the price functional achieves its minimum. 
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Proof. Due to the orthogonal decompositions of Euclidean spaces (4) we may write 
 

 ,   , moAvuAvx     

 .   , nodAdAcb     

 
Hence we obtain  
 

         
mdAcuAvAdAcuAvAxF ,   

        . ,, mm ddcuAAcuAA    (6) 

 

Since the vector md   is determined by the fixed vector mb   we may affect only the 

first term in (6). Thus we set cx  . Due to uAAAc   we obtain     . , mddxF   □ 

 
The minimal value    mddxF ,  is so called the price of the generalized solution. It is 

obvious that in the case there exists the classical solution to (2) the price is zero. 
 
There may exist more than one generalized solution for the given operator A and the vector b 
in (2). Let us denote 
 

     m
n ddxFxS ,:  .  

 
The set S is not empty as follows from the Proposition 2.1. Further S is a closed set because 
the function (5) is continuous. Finally S is convex. Suppose  1,0  ,  ,  tSySx . If we set 

   yttxtz  1  then we obtain     mddtzF ,  and hence   Stz   for any  1,0t . In the 

case that (2) has a classical solution the set S is a linear set of the form bAcAc    ,ker . 

However, if the price of the generalized solution is positive, the structure of S is the same as 
in the case of the classical solution. 
 
Proposition 2.2 
There is a unique solution among the generalized solutions which has the least norm. This 
solution is called normal solution. 
 

Proof. The claim of this Proposition says that there is a unique vector Sx   such that 
 

  Sxxx
nn

 :min .  

 
However it follows from the fact that S is nonempty, closed and convex set, see [5](page 
232).    □ 
 
Remark 2.3 
Let us notice that we have no requirements as to the inner products in Euclidean spaces. If we 
consider the standard inner product (Euclidean norm is derived from this product) we come to 
the well-known Least Square Method. Particularly, set    kk yx  ,, ,,, 11   . The 
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standard inner product in k  is   



k

i
iikyx

1

,   and hence the price functional (5) is of the 

form 
 

  
2

1 1
 
 













m

i

n

j
ijij baxF  .  

 
 
3 Moore-Penrose Pseudoinverse Operator 
 
Let us recall one concept of a generalization of the notion of the inverse operator (matrix). We 
consider the operator (1) and the following system of equations 
 
(i) AAXA  , 
(ii) XXAX  , 

(iii)   AXAX 


, 

(iv)   XAXA 


. 

 

The operator nmX :  (the matrix is of the type (n,m)). However, it is not clear whether 
such an operator exists and whether it is unique. 
 
Remark 3.1 

If there is nm   in (1) and the operator (1) is injective then .1 AX  It is obvious and we 
can verify this by direct substitution. 
 
Proposition 3.2 
For any operator (1) there is unique operator X satisfying (i)-(iv). 
 
Proof of uniqueness. Suppose X and Y are matrices satisfying (i)-(iv). It holds  
 

           AYAXAYAYAXAYAXAYAXAXAXAX 


.  

 
It also holds  
 

         YAYAXAXAYAXAYAXAYAXAXAXA 


.  

 
We can conclude 
 
         YYYAYXAAYXAXXX  .  

 
Proof of existence. Consider the operator  
 

 nnAAT  :* . (7) 
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The operator (7) is self-adjoint (its matrix is symmetric) and nonnegative in the sense that 

  0,
2


nn AxxTx   for any nx  . It has all eigenvalues nonnegative. We denote each of 

the different positive eigenvalues of (7) by the symbol sjj ,,1  ,  . The operator (7) may 

have a non-trivial kernel (its matrix is singular) and then 00   is also its eigenvalue. 

There are the spectral projections corresponding to positive eigenvalues sjj ,,1  ,   

 

 sjVP j
n

j ,,1  ,:  , (8.1) 

 
where jV  are the eigenspaces corresponding to j . We define also the mapping 

 

 00 : VP n  , (8.2) 

 
which is the spectral projection for the eigenvalue 00   with eigenspace 0V  in the case (7) 

is singular and 00 P  in the other case. We may write 

 

 j

s

j
j PT 




0

 . (9) 

 
The mappings (8.1) and (8.2) are orthogonal (symmetric) projections: 
 

 skjPPIPPPPkjPP
s

j
jjjjjkj ,,1,  ,  ,  ,  ,  ,0

1
0

2  


 . (10) 

 
The expansion (9) is the spectral decomposition of the operator (7) and (10) is the well-
known spectral decomposition of unit. Now we set 
 

 


 APX j

s

j j1

1


. (11) 

 
We prove that (11) is desired pseudoinverse operator, i.e. it satisfies the properties (i)-(iv) 
above. Prove only (i). The remaining properties may be proved similarly.  
 

 

  .

1

0
1

0

1 11

APAPIAPA

PPAAAPAAXA

s

j
j

kj

s

j

s

k j

k
j

s

j j











 



 




  

 
It suffices to show that 00 AP . However it is obvious since the range of 0P  is the kernel of 

the operator T and TA ker  ker  .  □ 
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We have showed that there is a unique operator satisfying the properties (i)-(iv). This is 
operator is called Moore-Penrose pseudoinverse operator (matrix) and it is usually denoted 

by the symbol A . As we noted in Remark 3.1 if A is injective operator then 1  AA . In 

this case IAA  , however in general case it holds 0PIAA  . 

 
 
4 The normal solution and the Moore-Penrose Pseudoinverse Operator 
 

The pseudoinverse operator (11) is in fact nmA  : . Let us denote  
 

 bAx   . (12) 
 
We explain the relation between the vector (12) and the normal solution defined in 
Proposition 2.2. 
 
Proposition 4.1 
The normal solution of the system (2) is the vector (12). 
 
Proof. Firstly we show that (12) is a generalized solution to (2). It means that the price 
functional (5) achieves its minimum at the point (12). Let us compute 
 
 

       
       .,,

,,,

00 mm

mmm

dddAccPIAdAccPIA

dAcAcAAdAcAcAAbbAAbbAAbAxbAxxF



 

  
The point of the minimum of (5) with the least norm has to be orthogonal to the kernel of the 

operator (1) because we observed that the set S of the minima of (5) is of the form Ax ker  . 
Using (11) we obtain  
 

  TbAPbA
s

j
j

j

ran  
1

1

 





.  

 

Using the relations (4) applied on the self-adjoint operator T we have that bA  is orthogonal 
to any vector lying in Tker . Since TA ker  ker  (in fact even equality holds) we have 
proved the claim of the proposition. 
 
Example. The lag operator B is of the basic meaning in the time series analysis, e.g. see [2]. In 
the finite dimensional case this operator is represented by the matrix 
 

  nM























  

000

1

0000

0100

0010











B ,  
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where  nM  is the space of all matrix of the order n. It is clear that 0 is the unique eigenvalue 

of B. Its adjoint operator B  is obviously represented by the matrix 

 nM























  

0100

0

010

0001

0000











B . 

Finally the operator T defined by (7) has the matrix representation 

 nM























  

100

0

0100

0010

0000











T . 

Its eigenvalues are 00   with eigenspace  10 span eV   and 11   with eigenspace 

 neeV ,,span 21   respectively. Here  0,,0,1,0,,0 ke  with 1 on the k-th coordinate. 

In order to express the pseudoinverse operator B  in the form (11) it is necessary to find the 

projection 1P . However it is seen that TP 1 . Hence we easily compute that *BB  . 

5 Some notes to generalizations 

The introduced approach to the generalized solution to the linear operator equation (2) is 
heavily dependent on the fact we consider the Euclidean space, i.e. the finite dimensional 
space equipped with an inner product. We may generalized in the direction of more 
generalized structure in a finite dimensional space: to take a normed linear space of the type 

    2  ,,1  ,  ppnp , see [4] or [5]. Another generalization is to relax the requirement of 

the finite dimension. The infinite dimensional analogue to the Euclidean space is the Hilbert 
space, i.e. the space of infinite dimension with an inner product which is complete with 
respect to the norm derived from this product. The typical example is the space of all square 
summable scalar sequences 2 . This is the model of any separable Hilbert space. The price 

functional (5) corresponding to the linear operator HUA : , where U is a linear space and 
H is a Hilbert space achieves its minimum if A has the closed range. The proof is given in [4] 
(page 141). This proof is based again on Riesz projection theorem which is referred in the 
proof of Proposition 2.2 above. Unfortunately the range of A is not closed in many important 
situations.. It turns out that the sufficient and necessary condition for existence of the 

generalized solution to (2) is that   AAb ran ran , where  Aran  is the orthogonal 

complement of Aran . 
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The natural generalization of the operator (1) to infinite dimension is the compact operator, 
see [3](page 29). It is a consequence of the open mapping theorem that any compact operator 
of infinite rank between Hilbert spaces has non-closed range. Another example of an operator 
with non-closed range is given in [2]. It is the difference operator. In these cases  there always 
exists vectors for which the price functional has no minimum and thus there is no generalized 
solution to the operator equation (2). Other generalizations and description of pseudoinverse 
operator can be found in [4]. 
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