
GRAPHLET COUNTING
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Abstract. Graphlet analysis describes a graph’s topology by observing frequencies of 4-
or 5-node induced subgraphs (graphlets) in the graph. We developed a graphlet counting 
approach based on a system of linear equations that relate the graphlet counts. For sparse 
large networks, such as those appearing in bioinformatics, the resulting algorithm is an order 
of magnitude faster than the existing approaches.
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1 Introduction
Networks are a very general modeling tool. All we need is a set of objects and a binary relation
between them and we can build a network. Therefore, networks arise in a variety of research areas,
from social sciences [2] and linguistics [3] to chemistry, pharmacology and bioinformatics [23]. We
can analyze such networks to discover interesting properties that translate to new understandings of
the underlying process.

One such approach is graphlet analysis. Graphlets are small connected patterns. Examples of 4-
node graphlets are a path (P4), a cycle (C4), a cycle with a diagonal (called a diamond), etc. They are
typically observed as induced subgraphs of the network. As small patterns present in the network, they
represent a summary of the network’s local structure. For example, denser networks would contain
more diamonds and cliques, while sparser ones would contain a higher proportion of paths and cycles.
Some other types of networks might differentiate themselves by a higher or lower presence of some
other graphlet.

We can use graphlets to summarize the entire structure of the network by counting how many times
each graphlet appears in it [22]. The other option is more node-centric and can be used to describe
the structure around a particular node [16]. Let us describe a node by a vector of how many times
it participates in each graphlet. To be even more precise, we can introduce the notion of orbits. We
can say that there are two types or roles of nodes in a star graph: the central node and leaves. More
formally, the orbits are equivalence classes of nodes under the action of the automorphisms of each
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graphlet. There are 11 orbits in 4-node graphlets. Therefore, we can assign a vector of orbit counts to
each node that tells us, how many times does a node occur in the role of each orbit.

Usually, we observe graphlets consisting of up to 4 or 5 nodes. Because the number of graphlets
of larger sizes grows very quickly (Table 1), it is not feasible to observe larger ones. Therefore, the
graphlet frequency vectors would contain mostly zeros. Besides, larger graphlets already span a large
portion of the network (small-world effect), which defeats the purpose of observing the local structure
of a network.

k 2 3 4 5 6 7 8 9 10
graphlets 1 2 6 21 112 853 11117 261080 11716571

Tab. 1. The number of k-node graphlets.

If we use graphlet counts as a signature of a network’s topology, how well does this actually de-
scribe the network? An interesting related problem is the reconstruction conjecture [13, 20]—are two
graphs with the same multiset of vertex-deleted subgraphs isomorphic? A multiset of vertex-deleted
subgraphs is equivalent to the frequencies of all (n − 1)-node graphlets in a graph with n nodes.
What about smaller graphlets? It is not hard to find a counterexample for 5-node graphlets. Graphs
in Figure 1 have the same number of all 5-node graphlets but are not isomorphic.

Fig. 1. Two nonisomorphic graphs with equal 5-node graphlet counts.

1.1 Applications

Graphlet analysis originates from bioinfomatics. There it was first used to propose a better random
model for protein-protein interaction (PPI) networks. Pržulj et al. [22] proposed the relative graphlet
frequency distance: a function that compares the local structure of two networks by comparing the
relative frequency of each graphlet in the networks. They used their distance measure to show that the
graphlet distribution in PPI networks is more similar to the graphlet distribution in random geometric
graphs (induced by a set of randomly placed points in 3D space that are close enough) than to random
networks that are modeling scale-free graphs.

Node-centric applications of graphlet analysis in bioinformatics are based on the assumption that the
network topology of the modeled process is related to the function of objects corresponding to nodes.
Let us consider the most prominent example of PPI networks. We model proteins with nodes and their
interactions with edges. We assume that proteins with similar functions should form similar patterns
of connections to neighbouring nodes in the network. Therefore, a similar local topology of two nodes
is an indication that they might have similar protein functions or properties and should be investigated
further. The goal of graphlet analysis in bioinformatics is often to narrow the search space of possible
candidates that have to be further investigated experimentally; speeding-up the research process and

443



reducing the expenses. Graphlets have been successfully employed to predict protein functions [16]
and aid in discovery of cancer-related [14] or age-related genes [17].

Besides the already mentioned applications, they also have other, more indirect uses. One such ex-
ample is their use in algorithms for network alignment. Given two similar networks, we would like
to align or pair the nodes from both networks to maintain the adjacency. The alignment should be
such that two nodes in the first network are adjacent exactly when their corresponding aligned nodes
in the second network are adjacent. Because there is often no exact solution, we have to allow some
mismatches. Exact penalties for such mismatches and the optimization function are a matter of ap-
plication. In any case, we can make use of vectors of orbit counts for each node as a heuristic for
aligning nodes that have a similar local topology. This led to development of several graphlet-based
network alignment algorithms: GRAAL [11], H-GRALL [15], MI-GRAAL [12].

Finally, let us mention some other non-biological applications of graphlet analysis. Juszczyszyn et
al. [9] observed graphlets in email-based social networks. Zhang et al. [28] used graphlets as an
additional feature in the problem of aerial image categorization, while Mugan et al. [18] employed
them for the task of entity resolution.

2 Graphlet Counting
Graphlet counting tools used in bioinformatics rely on exhaustive enumeration of all k-node graphlets.
Enumeration of graphlets is a challenging problem itself. Ideally, it should require a computational
time that is proportional to the actual number of all graphlets. Various approaches aim to achieve
this by optimizing isomorphism testing [26], exploiting graphlet symmetries [27], simultaneously
counting all graphlets [24], etc. However, we’re usually not interested in their actual occurrences but
only in their counts. It is clear that we can count graphlets at least as fast as we can enumerate them;
but can we count them faster than we can enumerate them?

Let us consider the most simple case, a triangle. Surprisingly, we can count the number of triangles
in an arbitrary graph with n nodes in o(n3) [8]. Let A represent a graph’s adjacency matrix. Then,
j-th element in i-th row of A3 contains the number of paths of length 3 between from node i to j.
It is well known that we can multiply two matrices in o(n3). The number of triangles is equivalent
to 1

6

∑n
i=1(A

3)i,i. Every cycle will be considered once for each of its three nodes and once for each
direction, together six times. The solution for detecting larger cliques by Nešetřil and Poljak [19]
reduces the problem to detecting a triangle in an auxiliary graph with O(nk/3) nodes, resulting in a
o(n3) algorithm.

We can count cliques faster than we can enumerate them. What about other graphlets? Kloks [10]
presented a system of equations that relates all 4-node graphlets and can be set up and solved in
O(nω), where ω represents the exponent in the time complexity of matrix multiplication. Eq. 1 is one
of his equations (A denotes the adjacency matrix of graph G = (V,E) and C the adjacency matrix of
its complement).

∑
(x,y)∈E

(AC)x,y(CA)x,y = 4#C4 +#P4 (1)

All mentioned approaches focus on solving a pattern counting problem in arbitrary dense graphs and
rely on fast matrix multiplication techniques. However, in practical applications we encounter mostly
sparse graphs, where it is often not possible to even construct an adjacency matrix, let alone multiply
it.
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2.1 ORCA

We developed ORCA (ORbit Counting Algorithm) [5] with the goal of outperforming existing enu-
meration techniques on sparse networks. It is based on a system of carefully chosen equations that
can be set up faster than we can enumerate all k-node graphlets. In fact, it requires enumeration of
only (k − 1)-node graphlets. ORCA computes all orbit counts for every node in the network. From
this more detailed statistic we can easily compute graphlet counts for each node and the total number
of graphlets in the network.

Fig. 2. Graphlets G7 and G8.

o12 + 3o14 =
∑

y,z: y<z,G[{x,y,z}]∼=G2

(c(y, z)− 1) (2)

Equation 2 is an example of one such relation for a given node x in graph G that establishes a
connection between orbits 12 and 14 of 4-node graphlets. The sum runs over all graphlets G2 (C3, a
cycle with 3 nodes) in G that contain x as one of the nodes. We refer to the other two nodes as y and
z. There are c(y, z) − 1 common neighbours of nodes y and z (without x), which together with x, y
and z induce either a subgraph equivalent to graphlet G7 with x in orbit 12 or graphlet G8 with x in
orbit 14. It turns out that we consider each occurrence of x in orbit 14 three times.

The system of equations for counting 4-node graphlets was designed on paper through trial and error
of finding a system of independent equations that is efficient to set up. The rank of this system of
equations is by 1 smaller than the number of orbits. Therefore, we have to know or compute one of
the orbit counts. It turns out that we can do this efficiently (in sparse real-world network) for complete
graphlets.

Moving on to 5-node graphlets required a more systematic approach (there are 58 orbits in 5-node
graphlets). We observed possible extensions of 4-node graphlets by attaching a new node to some
subset of its nodes. Each such extension leads to a candidate equation. We also showed that a
similar approach as for counting node-orbits can be used for counting edge-orbits [6]. The developed
algorithm has been used as a benchmark for other parallel [1] and approximate [4] graphlet counting
methods.

A generalization to larger graphlets is of more interest from theoretical than practical perspective. We
determined the conditions for construction of the required equations for the ORCA algorithm. For
every node x in every graphlet G there has to exist another node y such that:

1. d(y) ≤ k − 2,

2. G \ {y} is a connected graph,

3. if d(y) = k − 2, the neighbours of y induce a connected graph,
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where d(y) represents the degree of node y. Such node y will represent the node by which we will try
to extend a smaller graphlet with k − 1 nodes. The first condition ensures that we are not concerned
with common neighbours of too large sets of nodes, which are a part of precomputation. The second
condition ensures that the algorithm will have to enumerate (k − 1)-node graphlets and not some
disconnected patterns. The last condition restricts the algorithm’s space complexity and prevents
memory accesses from dominating the run time. The algorithm’s time complexity for counting k-
node graphlets is O(edk−3 + Tk); e represents the number of edges, d is the maximum degree of a
node and Tk is the time required to count cliques of size k.

We proved that such nodes indeed exist [7] for every noncomplete graphlet with at least 4 nodes.
The only exception is a cycle with 4 nodes, C4, which can be handled separately. There is a simple
strategy that accomplishes this. From the nodes that are farthest away from x (suppose they are at
distance u) pick the one with the lowest degree. If it doesn’t satisfy the conditions, pick the node with
the lowest degree among those at distance u− 1.

Can we adapt this approach for the dynamic setting of the graphlet counting problem? We are given
interleaved queries of three types: add an edge, remove an edge, compute orbit counts for a given
node. The algorithm already handles the computation of orbit counts for each node independently,
we just have to efficiently update the numbers of common neighbours (i.e. values c(a, b)), which
are used in equations. This can be done and results in a dynamic version of ORCA which is as fast
as the original version when used to add all edges into an empty graph and than compute the orbit
counts for all nodes. Another version of dynamic graphlet counting dispenses with the last query type
(obtaining orbit counts for a given node) and instead constantly maintains the number of graphlets in
the network after each addition or removal of an edge.

2.2 Application: Generating Random Graphs

How do we describe a general topology of a real-life network? By picking a random model that gen-
erates similar networks; social networks, for instance, are described as scale-free. This also enables
us to generate an arbitrary number of topologically similar networks. Such ensembles can be used,
for example, to evaluate the performance of a newly designed method on a larger set of networks.
Another related concept are network motifs [25], where an ensemble of random networks is used as
a null model to discover over-represented patterns (motifs) in the original network. Because graphlet
counts represent a summary of a network’s topology, we attempted to generate random networks that
have a prescribed (or at least very similar) number, Xi, of each 4-node graphlet.

F (G) =
8∑

i=0

| log(Ni(G) + 1)− log(Xi + 1)| (3)

The process of generating a random network with a given graphlet distribution was formulated as an
optimization procedure. We specified an optimization function, F (G), based on the relative graphlet
frequency distance, but removed the “relative” part (Eq. 3). A simple hill-climbing optimization picks
random edges to add or remove from the network and checks the similarity of the modified network
to the target distribution of graphlets. If the similarity improves, we keep the change, otherwise we
revert it. Using the dynamic version of ORCA that is capable of maintaining graphlet counts under
such modifications of the network makes the process feasible for the current size of PPI networks.
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F (G) G0 G1 G2 G3 G4 G5 G6 G7 G8

start 2.761 11000 42251 13492 167375 27308 1462 95264 25235 9321
finish 0.082 11626 418249 24796 11976090 9379476 387973 2749137 285672 22358
target 0.0 11626 418270 18225 11110782 9383348 445186 2216446 285736 22376

Tab. 2. Graphlet counts obtained by starting with a random geometric network.

The similarity of the obtained random network depends on the choice of the network that we start
from. We attempted to approximate the graphlet counts observed in a PPI network of bacteria E.
Coli by starting with a random geometric network (Table 2). The starting and target networks both
contained around 3000 nodes and 11000 edges. The optimization process requires less than an hour
for 1.5 million iterations. The resulting network that we obtained through optimization of 4-node
graphlet counts had a surprisingly similar distribution of 5-node graphlet counts (Figure 3). This is a
preliminary result that requires further investigation. Intuitively, the number of 2-node graphlets (the
number of edges) does not tell us much about the number of 3-node graphlets. On the other hand,
4-node graphlets seem to restrict the space of 5-node graphlets much more. It would make sense that
this influence grows with the size of graphlets.
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Fig. 3. The 5-node graphlet counts obtained by optimizing 4-node counts. White bars correspond to 
the distribution in the starting graph, gray bars corresponds to the obtained (generated) 

graph and black bars to the target graphlet distribution of a PPI network.

3 Conclusion
Bioinformatics is a rapidly evolving field with a growing amount of data due to recent technological 
advances. Simple improvements such as parallelization are often not enough; instead, new algorith-
mic and mathematical insights are required. We developed ORCA, which is based on combinatorial 
observations that establish relations between individual graphlet counts. These are employed to de-
sign an efficient graphlet counting algorithm that outperforms other approaches, which are based on 
exhaustive enumeration.

However, there is still a lot of room for improvement. Ortmann et al. [21] have already surpassed our 
method for counting 4-node graphlets. We know that the system of equations must have nonnegative 
integral solutions. Could we somehow incorporate this property into a more efficient algorithm?
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Several applications would benefit from an efficient graphlet counting method in weighted graphs.
Can we approach this with a similar method or does it require something new?
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