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Abstract. We study the famous mathematical puzzle of prisoners and hats. We introduce
a framework in which various variants of the problem can be formalized. We examine
three particular versions of the problem (each one in fact a class of problems) and
completely characterize them as to (non)existence of winning strategies.
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1 Introduction

Problems that can be collectively denoted as “puzzles of prisoners and hats” have been studied
since 1960’s (see e.g. [6]). The common idea of all such problems can be informally stated
as follows (we give a more precise formulation below): A group of prisoners is asked to guess
colors of hats they are wearing. In general, of course, they are not allowed to look at their own
hats, but may be allowed to see some of the hats that others are wearing and hear the guesses
of some of their colleagues. The goal of the prisoners usually is to maximize the number of
correct guesses. No communication among the prisoners is allowed since the moment the hats
are placed on their heads. However they have an opportunity to devise a common strategy in
advance.

This may seem as just a recreational mathematical puzzle. Nevertheless certain variants of the
problem have been studied and applied in contexts as distinct as coding theory [2], set theory
[5] or theory of auctions [1].

A recent and rather informal introduction to the topic (focused on the infinite case) is [7]. The
finite case is studied in more detail in [3]. An extensive treatise on the subject is [8].

In this paper we describe a framework in which the various versions of the problem of prisoners
and hats can be formalized in a unified way (section 1.2). We use this framework to classify
some of the important cases with regard to existence of a winning strategy for the prisoners. In
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particular we will be interested in the “hear nothing, see all” case (section 2.1) and two cases
where prisoners can be thought of as standing in a line — the “hear nothing, see forward” case
(section 3.1) and the “hear backward, see forward” case (section 3.2). This, of course, is just
the tip of the iceberg. A complete classification of prisoners and hats problems is an extensive
but interesting project and an inspiration for further research.

1.1 Preliminaries and notation

1.1.1 Basic notation
xy denotes the set {f ; f : x→ y} of all functions from x to y. idX denotes the identity function
on X . A natural number n and a function f are understood in the usual set-theoretical sense,
i.e. n = {0, . . . , n− 1} and f = {(x, y); f(x) = y}.

1.1.2 Directed graphs

In a directed graph G = 〈V,E〉 a direction of an edge (v′, v) ∈ E is understood as from v′ to v.
A directed path in G is also called ascending path, while a descending path in G is a directed
path in the graph 〈V,E−1〉.

It is easy to see that if G has no infinite descending paths, then there is a well-ordering ≺⊇ E
on V .

1.2 The prisoners and hats problem

The problem we want to investigate is based on the following story:

1.2.1 A story: Mathematicians and an evil hatter

A nonempty set M of mathematicians is captured by an evil hatter who announces that the next
day they will play a hat guessing game with their freedom (if they win) or death (if they lose)
at stake. The hatter will place differently colored hats, with colors coming from a nonempty
set C, onto mathematicians heads and the unlucky prisoners will be forced to guess what color
they will be wearing. The malevolent captor reveals some details about the rules in advance:

The game starts with the hatter choosing an assignment a : M → C from certain subset
A ⊆ MC of allowed assignments of hat colors to the mathematicians. He then places hats
accordingly onto mathematicians heads and decides that a mathematician m will be allowed to
see the hat his colleague m′ is wearing if and only if (m′,m) ∈ S for certain binary relation
S ⊆M2.

The hatter then follows some well-ordering ≺ that extends the canonical partial ordering of
certain directed graph 〈T,H〉 with no infinite descending paths whose vertices are labeled by
mathematicians via some m : T → M (not necessarily one-to-one nor onto) and at time t ∈ T
he asks the mathematician m(t) for her fateful guess (a color from C) which he then records as
g(t). Before m(t) is asked at time t, she will be allowed to hear the record of all guesses g(t′)
such that (t′, t) ∈ H . After her guess, m(t)’s memory is erased so that she doesn’t remember
what she heard nor what her own guess was. (It is easy to see that from the point of view of the
mathematicians, the choice of ≺⊇ H is irrelevant.)

After the whole collection g : T → C of guesses is obtained, the hatter compares it with the
actual assignment a using an evaluation function e : A×TC → 2 and he sets the mathematicians
free if e(a, g) = 1 or executes them if e(a, g) = 0.
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The hatter tells the mathematicians what C, A, S, 〈T,H〉, m and e he is going to use and leaves
them for the night. They now have some time to find an optimal strategy that maximizes their
chances of surviving.

1.2.2 The formalization of the problem

An instance (of the prisoners and hats problem) is an tuple I = (M,C,A, S, T,H,m, e) where

• M and C are nonempty sets,

• ∅ 6= A ⊆ MC,

• S ⊆M2,

• 〈T,H〉 is a directed graph with no infinite descending paths,

• m : T →M ,

• e : A× TC → 2.

1.2.3 Strategies

There is a game GI of two players (the hatter and the group of mathematicians) with imperfect
information that corresponds naturally (according to the story) to the instance I.

We are not going to define GI here in detail. We just state, in a form of a definition, what a
strategy for mathematicians in this game is:

A strategy (for I) is any function σ : X → C where X is the set of all triples (t, α, γ) where
t ∈ T , α = α′ � S−1[m(t)] for some α′ ∈ A, γ : H−1[t] → C. Any strategy σ together with
a choice of a ∈ A uniquely determine the course of the game (i.e. the collection of all guesses
g = ga,σ : T → C) and thus the result e(a, g):

Lemma 1 For any strategy σ and a ∈ A there is the unique g = ga,σ : T → C such that for
every t ∈ T

g(t) = σ(t, a � S−1[m(t)], g � H−1[t]).

Proof. As 〈T,H〉 does not contain infinite descending paths, there is a well-ordering ≺⊇ H
on T . Let (tα)α∈δ for some ordinal δ be an enumeration of T such that tα ≺ tβ if and only if
α < β. We construct g : T → C by recursion:

g(tα) = σ(tα, a � S−1[m(tα)], g � H−1[tα]),

which is correct since H−1[tα] ⊆≺−1 [tα] ⊆ {tβ; β < α}.

The uniqueness of g can be easily proven by induction. �

A strategy σ for I is winning if e(a, ga,σ) = 1 for every a ∈ A.

Strategies for “disjoint” instances can be combined to give a strategy for their “union”: Let
I 6= ∅ and for i ∈ I let σi be a strategy for an instance Ii = (Mi, Ci, Ai, Si, Ti, Hi,mi, ei).
Assume that the sets Ti, for i ∈ I , are pairwise disjoint and let

• M =
⋃
i∈IMi,
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• C =
⋃
i∈I Ci,

• A ⊆ {a ∈ MC; (∀i ∈ I)(a �Mi ∈ Ai)},

• S ⊇
⋃
i∈I Si,

• T =
⋃
i∈I Ti,

• H ⊇
⋃
i∈I Hi,

• m =
⋃
i∈I mi,

• e : A× TC → 2.

Then there is a strategy σ for the instance I = (M,C,A, S, T,H,m, e) given by

σ : (t, α, γ) 7→ σi(t, α � S−1i [mi(t)], γ � H−1i [t])

where i ∈ I is the unique index such that t ∈ Ti. We call such σ the (I-)combination of
strategies σi, i ∈ I , and denote it by

⊔I
i∈I σi or just

⊔
i∈I σi.

2 A set-like case
In this paper, we are going to deal only with cases when every mathematician is asked for her
guess exactly once, i.e. when m : T → M is a bijection. Then we can simplify our notation
by assuming T = M , m = idT and by omitting T and m from the instances, writing them just
as I = (M,C,A, S,H, e). Also we will always have A = MC, which will allow for another
simplification in notation later on.

The following evaluation functions will be used throughout the rest of this paper: For a cardinal
number κ we define evaluation functions e≥κ (at least κ correct guesses) and e<κ (less than κ
incorrect guesses) by

e≥κ(a, g) = 1⇔ |{m ∈M ; a(m) = g(m)}| ≥ κ,

e<κ(a, g) = 1⇔ |{m ∈M ; a(m) 6= g(m)}| < κ.

The case, we are going to deal with in this section, requires no structure to be defined on the
set M (we call such cases “set-like”). This distinguishes this case from the cases defined in
the following section, where we will be assuming a fixed well-ordering on M (“well-ordered”
cases).

2.1 The “hear nothing, see all” case

Let us denote by hNsA(M,C, e) the instance I = (M,C,A, S,H, e) with A = MC, S =
M2 − idM and H = ∅ (that is every mathematician sees all hats except her own but hears no
previous guesses).

This is a basic case, many subcases of which have been thoroughly analyzed elsewhere. For
the convenience of the reader, we present here a compact selfcontained overview that gives a
complete (at least from our point of view) characterization of existence of winning strategies.
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2.1.1 Case: M finite

If both M and C are finite, then there is a strategy that guarantees at least b|M |/|C|c correct
guesses, but no strategy is able to guarantee more. This was probably first proven in [10] for
just two colors and in [4] in full generality (see also [8, Theorem 2.3.1]):

Proposition 2 Let M,C be finite, n ∈ N. Then there is a winning strategy σ for the instance
hNsA(M,C, e≥n) if and only if n ≤ |M |/|C|.

Proof. “⇐”: It is enough to find a winning strategy for hNsA(M ′, C ′, e≥1) where |M ′| = |C ′|.
Indeed, M can be divided into n disjoint sets M0, . . . ,Mn−1 of size |C| and a possible leftover
(as n ≤ |M |/|C|). The combination σ =

⊔
i<n σi of winning strategies σi for hNsA(Mi, C, e≥1)

is then a winning strategy for hNsA(M,C, e≥n). (There is at least one correct guess on each of
n disjoint sets Mi.)

Let us therefore assume that |M | = |C| and n = 1. Without loss of generality, we can have
M = C ∈ N. Define, for m ∈M and α : M − {m} → C, the value of σ as

σ(m,α, ∅) = m−
∑
m′ 6=m

α(m′),

where the right side is computed modulo M . Then, for a ∈ MC, let ma =
∑

m′∈M a(m′)
(modulo M ). We get

ga,σ(ma) = σ(ma, a � (M − {ma}), ∅) = ma −
∑

m′ 6=ma

a(m′) = a(ma),

thus guaranteeing e(a, g) = 1.

“⇒”: Suppose that there is a winning strategy σ for n > |M |/|C|. Then

|{(a,m); a ∈ A,m ∈M,a(m) = ga,σ(m)}| ≥ n|A| > |M ||A|
|C|

,

hence for some m ∈M we get

|{a ∈ A; a(m) = ga,σ(m)}| > |A|/|C|

and consequently
|{a ∈ A; a ⊇ a′, a(m) = ga,σ(m)}| > 1

for some a′ : M − {m} → C. But that means that for some a0 6= a1 from A such that ai ⊇ a′

for i < 2 we have a0(m) = ga0,σ(m) = σ(m, a′, ∅) = ga1,σ(m) = a1(m) and thus a0 = a1 — a
contradiction. �

For infinite C, no strategy can guarantee even one correct guess:

Proposition 3 Let M be finite, C be infinite. Then there is no winning strategy for the instance
hNsA(M,C, e≥1).

Proof. Suppose that a winning strategy σ exists. Let C ′ ⊆ C such that |C ′| = |M | + 1.
Clearly, existence of σ implies existence of a winning strategy for hNsA(M,C ′, e≥1), which is
impossible by the previous proposition. �
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2.1.2 Case: M infinite

If |C| = 1, then obviously every strategy guarantees all guesses to be correct. For infiniteM and
|C| > 1 there is a strategy that guarantees at most finitely many incorrect guesses, but no fixed
finite number of incorrect guesses can be guaranteed. The implication “⇐” in the following
proposition is known as the Gabay-O’Connor theorem (see e.g., [8, Theorem 3.2.2]):

Proposition 4 Let M be infinite, |C| > 1 and κ a cardinal. There is a winning strategy for the
instance hNsA(M,C, e<κ) if and only if κ ≥ ω.

Proof. “⇐”: Clearly, it is enough to find a winning strategy for hNsA(M,C, e<ω). Denote ∼
the equivalence on A such that a ∼ a′ if and only if a(m) 6= a′(m) for at most finitely many
m ∈ M . Let s : A/∼ → A be a selector (i.e. s([a]∼) ∼ a for all a ∈ A). Then a winning
strategy can be defined as

σ(m,α, ∅) = s([a]∼)(m),

for m ∈ M and α : M − {m} → C, where a ∈ A is arbitrary such that α ⊆ a (the definition
is correct as any a, a′ ⊇ α may have different value only at m and thus a ∼ a′). Indeed, σ is
winning, as for all but finitely many m ∈ M we get ga,σ(m) = σ(m, a � (M − {m}), ∅) =
s([a]∼)(m) = a(m).

“⇒”: Suppose that there is a winning strategy σ for hNsA(M,C, e<n) for some n ∈ N. Choose
C ′ = {c0, c1} ⊆ C with c0 6= c1 and M ′ ⊆ M such that |M ′| = 2n. Define a strategy σ0
for hNsA(M ′, C ′, e<n) by σ0(m,α, ∅) = σ(m,α ∪ ((M −M ′) × {c0}), ∅) for m ∈ M ′ and
α : M ′ − {m} → C ′. Since σ is winning, σ0 is as well. That means that for each a ∈ M ′

C ′,
we have |{m ∈ M ′; a(m) = ga,σ0(m)}| > |M ′| − n = n and thus σ0 is winning also for
hNsA(M ′, C ′, e≥n+1). But by Proposition 2 there is no winning strategy for hNsA(M ′, C ′, e≥k)
with k > |M ′|/|C ′| = n — a contradiction. �

3 Well-ordered cases
We now move to cases where the set M is thought of as well-ordered and S and H are defined
through this ordering.

LetM = 〈M,≺〉 be a nonempty well-ordering. By � we mean ≺−1. We define two subcases
of the problem of prisoners and hats – the “hear nothing, see forward” case and the “hear
backward, see-forward” case:

• hNsF(M, C, e) = (M,C,A, S,H, e) where A = MC, S =� and H = ∅,

• hBsF(M, C, e) = (M,C,A, S,H, e) where A = MC, S =� and H =≺.

In less formal words, the mathematicians are standing in a (well-ordered) line facing the (possi-
bly infinite) tail of the line. In hNsF(M, C, e) every mathematician sees all hats in front of her
but hears nothing, while in hBsF(M, C, e) she sees all hats in front of her and hears all guesses
of her colleagues behind her.

Further on we assume (without loss of generality) that M is a nonzero ordinal number and ≺ is
the usual ordering < of ordinals, i.e.,M = 〈β,<〉 for an ordinal β > 0.
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3.1 The “hear nothing, see forward” case

3.1.1 Case: M finite

For finite M and |C| > 1 no strategy guarantees even one correct guess:

Proposition 5 Let |C| > 1 andM = 〈n,<〉 for 0 < n ∈ N. Then there is no winning strategy
for the instance hNsF(M, C, e≥1).

Proof. Assume, for contradiction, that σ is a winning strategy for hNsF(M, C, e≥1). We con-
struct an assignment a ∈ A such that ga,σ(m) 6= a(m) for all m ∈ M . This can be done easily
by reverse induction on n: In the (n− i)th step we set a(i) 6= σ(i, a � {i+ 1, . . . , n− 1}, ∅) =
ga,σ(i), which is possible thanks to |C| > 1. �

3.1.2 Case: M infinite

IfM = 〈α,<〉 for α infinite, then the situation is similar to the “hear nothing, see all” case —
at most finitely many incorrect guesses can be guaranteed, but there is no finite upper bound on
their number. The idea of the proof of the implication “⇐” in the following proposition comes
from [8, Theorem 4.2.1], however our setting is different:

Proposition 6 Let |C| > 1,M = 〈β,<〉 for an ordinal β ≥ ω, and κ be a cardinal. There is a
winning strategy for the instance hNsF(M, C, e<κ) if and only if κ ≥ ω.

Proof. Analogous to the proof of Proposition 4.

“⇐”: Clearly, it is enough to find a winning strategy σ for hNsF(M, C, e<ω): For m ∈ M
we define the equivalence ∼m on A = MC by a ∼m a′ if and only if a(m′) = a′(m′) for all
m′ > m (that is for all m′ that m can see). We denote by s the selector on P(A)− {∅} that for
∅ 6= X ⊆ A selects s(X) as the <A-least element of X , where <A is a fixed well-ordering of
A. The strategy σ can then be defined as

σ(m,α, ∅) = s([a]∼m)(m),

for m ∈ M and α : {m′ ∈ M ;m < m′} → C, where a ∈ A is arbitrary such that α ⊆ a (this
is correct as any two such a’s are ∼m-equivalent).

We prove that σ is winning for hNsF(M, C, e<ω): For contradiction, let there be a ∈ A and
M ′ ⊆M infinite such that for all m ∈M ′

a(m) 6= ga,σ(m) = σ(m, a � {m′ ∈M ;m < m′}, ∅) = s([a]∼m)(m). (1)

Let us choose an increasing sequence m0 < m1 < · · · of length ω in M ′. We show that
then s([a]∼m0

) >A s([a]∼m1
) >A · · · is a strictly <A-decreasing sequence in A, which is in

contradiction with <A being a well-ordering: From mi < mi+1 it follows (∀a′ ∈ A)(a ∼mi
a′ → a ∼mi+1

a′), i.e., [a]∼mi ⊆ [a]∼mi+1
and thus s([a]∼mi ) ≥

A s([a]∼mi+1
) by the definition

of s. But the equality is not possible since that would mean ga,σ(mi+1) = s([a]∼mi+1
)(mi+1) =

s([a]∼mi )(mi+1) = a(mi+1), contradicting (1).

“⇒”: Assume for contradiction that there is a winning strategy σ for hNsF(M, C, e<n) for
some 0 < n ∈ N. Then we can take M′ = 〈n,<〉 ⊆ M and define a strategy σ0 for
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hNsF(M′, C, e<n) by σ0(m,α, ∅) = σ(m,α ∪ ((M − M ′) × {c0}), ∅) for m ∈ M ′ and
α : {m′ ∈M ′;m < m′} → C, where c0 ∈ C is fixed. From our assumption on σ it follows that
σ0 is winning for hNsF(M′, C, e<n), and thus (because |M ′| = n) also for hNsF(M′, C, e≥1).
This contradicts Proposition 5. �

3.2 The “hear backward, see forward” case

The approach we are going to present is an algebraic one. All the theorems that we use and that
go beyond an elementary course of algebra can be found in [11]. The author owes the credit for
the idea to Jan Šaroch [9].

Before stating the crucial Lemma 7, let us recall some notions concerning Abelian groups. For
an (additively written) Abelian group G and an ordinal δ, we denote by Gδ the product of δ
copies of G, that is the group whose underlying set is δG = {f ; f : δ → G} and the group op-
eration is defined pointwise. By G(δ) we denote the direct sum of δ copies of G, that is the sub-
group of Gδ whose underlying set is {f ; f : δ → G and f(α) = 0 for all but finitely many α ∈
δ}. There is the natural sum homomorphism Σ : G(δ) → G defined by Σ(f) = f(α0) + · · · +
f(αn−1) where α0, . . . , αn−1 is an enumeration of all α ∈ δ for which f(α) 6= 0 and the sum is
computed in G.

Lemma 7 For any ordinal δ > 0 and cardinal µ > 0 there is an Abelian groupG of size µ such
that the sum homomorphism Σ : G(δ) → G can be extended to a homomorphism Σ′ : Gδ → G.

Proof. For µ ≥ ω, let G be a divisible Abelian group of size µ, e.g. G = Q(µ). Then G is
injective in the category of Abelian groups and thus Σ factors through the inclusion idG(δ) :
G(δ) → Gδ, yielding the required Σ′.

For 1 < µ < ω, we take G = Z/µZ (the additive group of integers modulo µ). Then G is
purely injective (because finite). The inclusion idG(δ) : G(δ) → Gδ is pure (even an elementary
embedding, see [11, Corollary 1.8]) and so Σ factors through it, yielding Σ′ as before. �

Now we are ready to show that for the “hear backward, see forward” case there is always a
strategy that guarantees at most one incorrect guess:

Proposition 8 Let |C| > 1,M = 〈M,≺〉 be arbitrary, and κ be a cardinal. There is a winning
strategy for hBsF(M, C, e<κ) if and only if κ ≥ 2.

Proof. “⇒”: Suppose for contradiction that there is a winning strategy σ for hBsF(M, C, e<1),
that is that σ guarantees all guesses correct. Then for the ≺-least element m ∈ M we get
a(m) = ga,σ(m) = σ(m,α, ∅) = ga′,σ(m) = a′(m) for any α : M − {m} → C and α ⊆ a, a′ :
M → C. This is of course a contradiction as we may take a, a′ such that a(m) 6= a′(m).

“⇐”: It is enough to find a winning strategy for hBsF(M, C, e<2). The case |M | = 1 is trivial.
Further on we assume |M | > 1. Without loss of generality suppose that M = δ ∪ {−1}, for
an ordinal δ > 0, ≺ is the usual ordering of δ ∪ {−1} and C = µ > 0 a cardinal. By Lemma
7 there are an Abelian group G of size µ and a homomorphism Σ′ : Gδ → G extending the
sum homomorphism Σ : G(δ) → G. Again, without loss of generality, we may assume that the
underlying set of G is µ = C.

We define σ as follows:

σ(−1, α, ∅) = Σ′(α) for α ∈ Gδ = MC, and σ(β, α, γ) = γ(−1)− Σ′(α ∪ {(β, 0)} ∪ γ � β),
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for β ∈ δ, α : {β′; β < β′ ∈ δ} → C, and γ : β ∪ {−1} → C, where the subtraction is
computed in G.

We prove that
ga,σ(β) = a(β) (2)

for all β ∈ δ and a ∈ A by induction on β: First, ga,σ(−1) = σ(−1, a � δ, ∅) = Σ′(a � δ)
(which may differ from a(−1)). For the inductive step, let us assume (2) for all β′ < β. Then

ga,σ(β) = σ(β, a � {β′; β < β′ ∈ δ}, ga,σ � (β ∪ {−1})) =

= ga,σ(−1)− Σ′(aβ) =

= Σ′(a � δ)− Σ′(aβ) =

= Σ′(a � δ − aβ) =

= Σ(a � δ − aβ) =

= a(β),

where aβ = a � (δ − {β}) ∪ {(β, 0)}, the first equality is just definition of ga,σ, the second one
holds due to the inductive assumption, the third one holds by the “−1st step”, and the last three
follow from the properties of Σ and Σ′ and the definition of aβ . �
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