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Abstract. We prove a theorem that combines omitting and realizing of types in one 
structure. Given two collections of types, we formulate a condition ensuring existence 
of a model realizing types from the first collection while omitting types from the second.
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1 Preliminaries

Let us first recall some important notions and fix notation that will be used throughout the paper.

1.1 Basic notation

By κ we denote infinite cardinal numbers; ω, resp. ω1, denote the smallest infinite, resp. the
smallest uncountable, cardinal number.

In the next, unless explicitly stated otherwise, L denotes a countable language, M a structure
for L, M denotes the universe of M, and T a theory in L.

If A ⊆M , then MA denotes the expansion of M by adding names for elements from A as new
constants.

Th(M) denotes the set of all L-formulas true in M. Th(MM) is called the elementary diagram
of M and is denoted by ∆e(M).
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1.2 Types in theories, types in structures

By a type in T we mean a set p(x) of L-formulas in the free variable x, such that p(x) is
consistent with T (i.e. for any φ1(x), . . . , φn(x) ∈ p(x), the theory T ∪ {∃x(φ1(x) ∧ · · · ∧
φn(x))} is a consistent). We say that p(x) is isolated if there exists an L-formula ψ(x) consistent
with T and such that ψ(x) → φ(x) is provable in T for any φ(x) ∈ p(x).

By a type over A in M we mean a type in the theory Th(MA).

1.3 Realizing and omitting

We say that p(x) is realized in M by an element m ∈ M if φ(m) holds true in M for every
φ(x) ∈ p(x). If p(x) is not realized by any m ∈M , we say that p(x) is omitted in M.

A structure M is said to be saturated if for any A ⊆ M , such that |A| < |M |, every type in M
over A is realized in M by some m ∈M .

2 Motivation
Given a theory T , one might ask how its models differ from one another with respect to the types
realized or omitted in them. The next two theorems are well-known results that describe two
opposite approaches to this question. They can be found in [1] as Theorem 4.2.4 and Corollary
4.3.14.

In a complete theory, all the isolated types are always realized. Apart from that, there is no
other restriction on what types can be omitted, as expressed in the Omitting Types Theorem.

Theorem 1 (Omitting Types Theorem). Let L be a countable language, T a consistent theory
in the language L. Let Ω be a countable collection of nonisolated types in T . Then there exists
a countable model M of T omitting all the types from Ω.

On the other hand, we can find a model realizing all the types we could wish for, under some
assumptions.

Theorem 2. Let L be a countable language, T a complete theory in L with infinite models.
Suppose that 2κ = κ+. Then there exists a saturated model of T of size κ+.

In our main theorem, we assume that the continuum hypothesis (CH) holds true, i. e. 2ω = ω1.
Therefore, in our case, the previous theorem ensures the existence of saturated structures of
cardinality ω1.

Of course there may be, in general, other models “in between” those two cases, i. e. models
with some nonisolated types realized and others omitted. We concern ourselves with a situation
when we are given two collections of types—collection Ω of types to be omitted and collection
Σ of types to be realized. Our theorem is therefore filling in the gap between the theorem on
existence of saturated models and the Omitting Types Theorem.

The motivation for our theorem comes not only from a theoretical interest, but from the study
of real closed fields and their substructures, especially the so called integer parts, as presented
in [2]. In particular, it is possible to study how automorphisms of real closed fields act on
the substructures in question. A natural connection between automorphisms of a structure and
saturation of its substructures is given by the following proposition.

Proposition 3. If A is a structure and a its automorphism, then any saturated substructure of
A is mapped by a onto a saturated substructure of A.
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In our specific case, we were led to look for substructures of real closed fields that are saturated
in the language containing only the order relation ≤, but not saturated when the whole language
of arithmetic is considered. We believe that this is an example of the most natural application
of our theorem—the collections Σ, of types to be realized, and Ω, of types to be omitted, are
distinguished by the language; Σ contains types only in certain sublanguage, while the types
from Ω can be in the full language in question.

3 Main result
Before we proceed to a formulation of our main theorem, we need one more notion. As we have
indicated above, our aim is to find a structure M realizing all the types from the collection Σ.
We would like to allow parameters from M in those types. For this reason, we allow countably
many parametric variables vi to appear in the formulas.

Definition 4. A countably parametrized set of L-formulas in the variable x is a set of L-
formulas whose all free variables belong to {x} ∪ {vi; i ∈ ω}.

In the next, we denote such countably parametrized sets of formulas by s(x, v̄). Once we have
obtained some structure M and are given a sequence of its elements m̄ ∈ Mω, it is possible to
“substitute” m̄ for v̄ and hence understand s(x, m̄) as a set of formulas with parameters from
M . Such an s(x, m̄) may, or may not, become a type in M, depending on the choice of m̄.

If Σ is a collection of such countably parametrized sets of formulas and e : ω1 → Σ is its
enumeration, we write sα(x, v̄) for e(α).

Theorem 5. (CH) Let L be a countable language, T a consistent theory. Let Ω be a countable
collection of nonisolated types in T and let Σ be a collection of countably parametrized sets of
L-formulas. Furthermore, let us fix an enumeration of Σ.

Suppose that for any β < ω1 and any countable model M of T omitting all types from Ω, it
holds that no p(x) ∈ Ω is isolated in the theory∪

{sα(cα,m̄, m̄);α ≤ β, m̄ ∈Mω, sα(x, m̄) is a type of M}∪∆e(M),

where {cα,m̄;α ≤ β, m̄ ∈Mω} is a set of fresh constants.

Then there exists a model M of T omitting every p(x) ∈ Ω and realizing every type in M of
the form s(x, m̄), where s(x, v̄) ∈ Σ and m̄ ∈Mω.

Proof. First, we fix a set U of cardinality ω1 and an enumeration {ūγ}γ∈ω1 of Uω. The universe
of the model M we look for will be a subset of U .

We construct an elementary chain M0 4 M1 4 . . . 4 Mβ 4 . . . of length ω1 satisfying the
following conditions:

1. For any β < ω1, Mβ is a countable model of T omitting all types from the collection Ω,
Mβ ⊆ U .

2. Let β < ω1, and let α, γ < β. If there is δ < β such that ūγ ∈ (Mδ)
ω and sα(x, ūγ) is a

type of Mδ, then it is realized in Mβ .

By the Omitting Types Theorem, there exists a countable model M0 of T omitting all types
from Ω. Moreover, it can be chosen so thatM0 ⊆ U . Such an M0 clearly satisfies the conditions
above.
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Suppose λ is a limit ordinal and we have already constructed the elementary chain M0 4
M1 4 . . . 4 Mβ 4 . . . of length λ satisfying all the above conditions up to λ. If we extend
this elementary chain by adding Mλ :=

∪
β<λ Mβ as its last element, it can be easily checked

that such an extension satisfies the above condition up to and including λ.

Suppose we have already constructed the chain up to Mβ; we show how to obtain Mβ+1.
Consider a theory∪

{sα(cα,ūγ , ūγ);α, γ ≤ β, ūγ ∈ (Mβ)
ω, sα(x, ūγ) is a type of Mβ} ∪∆e(Mβ),

where {cα,ūγ ;α, γ ≤ β} is a set of fresh constants.

It is a consistent theory in a countable language and, by the assumption of the theorem, no
p(x) ∈ Ω is isolated in it. Hence, using again the Omitting Types Theorem, it has a countable
model Mβ+1 omitting all types from Ω; moreover such that Mβ+1 ⊆ U . It is obvious that
Mβ+1 satisfies condition 1. Condition 2 is satisfied as well, since the theory makes sure that
the type sα(x, ūγ) is satisfied by the newly added constant cα,ūγ .

Finally, let us define M :=
∪

β<ω1
Mβ . It is a union of an elementary chain of models of T and

therefore also a model of T . It ommits all types from Ω as all Mβ do so. Let m̄ ∈Mω, α < ω1

and suppose sα(x, m̄) is a type in M. Then, by regularity of ω1, there is some β < ω1 such that
m̄ ∈ (Mβ)

ω. Put µ := max(α, β); since Mµ 4 M, it holds that sα(x, m̄) is also a type in Mµ.
By condition 2, it is realized in Mµ+1 and therefore also in M.

4 Application
We present one application of our main theorem as an illustration of its use. In this section, N
denotes the set of all natural numbers and P denotes the set of all prime numbers.

Let Pr be the additive theory of the structure of natural numbers and p(x) a type expressing that
x is a nonzero element divisible by all primes; i. e. Pr = Th(⟨N, 0, 1,+,≤⟩) and p(x) is the
set {x ̸= 0} ∪ {p|x; p ∈ P}.1 We show how to obtain a model of Pr saturated in the language
{0, 1,≤} omitting p(x).

Lemma 6. Let M be model of Pr and let s(x) be a type in M in the language {0, 1,≤}
omitted in M. Let us fix a function τ : P → N, such that τ(p) ∈ {0, 1, . . . , p − 1}. Then
s′(x) = s(x) ∪ {x mod p = τ(p); p ∈ P} is also a type in M.

Proof. Let us fix M′, a model of ∆e(M) realizing s(x) by some some element m ∈ M ′

(such a model exists by Theorem 2). Then the Z-component of m, i.e. the set Z = {m′ ∈
M ′; |m − m′| ∈ N}, is disjoint from M (else m would be an element of M). Therefore all
the parameters from s(x) lie outside of Z. By considering all the order-automorphisms of M′

shifting the elements of Z while fixing all the other, in particular all parameters from s(x), it is
easy to see that any element of Z realizes s(x). By the Chinese remainder theorem, every finite
part of s′(x) is realized by some element of Z. Therefore s′(x) is a type.

The lemma above tells us that we can control moduli of elements realizing types in the language
{0, 1,≤}. This allows us to avoid the type p(x) from being realized, as stated in the next lemma.

1The formula p|x can be expressed in the additive language as (∃y)(y + y + · · ·+ y︸ ︷︷ ︸
p-times

= x).
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Lemma 7. Let M be a countable model of Pr omitting p(x). Let Σ be a countable family of
types in the language {0, 1,≤} in M. Then there exists a model M′ of ∆e(M)∪{s(cs); s ∈ Σ},
where {cs, s ∈ Σ} is a set of fresh constants, omitting p(x).

If T is the theory Pr, Ω = {p(x)}, and Σ is the set of all countably parametrized sets of
formulas in the language {0, 1,≤}, then, by Lemma 7, the assumption of Theorem 5 is satisfied.
Therefore, as an application, we get the following result.

Theorem 8. (CH) There exists a model M of Pr saturated in the language {0, 1,≤} and omit-
ting the type {x ̸= 0} ∪ {p|x; p ∈ P}.

5 Further research
There are two basic areas that offer opportunity for further research.

First, one could try to get rid of the assumption of the continuum hypothesis and find a natural
reformulation of our theorem with no additional set theoretic assumptions.

Second, one could try to come up with more algebraic applications of our theorem, apart from
the application in the study of real closed fields and their integer parts we have already men-
tioned.
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