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Abstract. We propose an MIP model to design a private charging infrastructure for a fleet of
electric vehicles operating in large urban areas. We derive an IP problem and we show that it
is equivalent to a network flow model. We illustrate that the flows in networks can be used
in the study of properties of location-scheduling problems related to the design of charging
infrastructure.
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We propose mixed integer programming (MIP) and integer programming (IP) models to design a pri-
vate charging infrastructure for a fleet of electric vehicles operating in large urban areas. Examples
of such a fleet include taxicabs and small vans used in city logistics or with shared vehicles. The fleet
is composed of vehicles equipped with an internal combustion engine, but the operator is wishing to
replace them with fully electric vehicles in the near future. Hence it is required to design a private net-
work of charging stations that will be specifically adjusted to the operation of the fleet. We use GPS
traces to characterize actual travel patterns of individual vehicles. We formulate location-scheduling
optimization models that determine the maximum number of vehicles that can be recharged without
affecting their routes and parking behaviour (MIP model) or minimize the number of charging sta-
tions under the condition that all vehicles can be recharged (IP model). The MIP model assumes that
all vehicles possess complete information about all other vehicles. To study the role of available infor-
mation, we evaluate the resulting designs considering uncoordinated charging when vehicle drivers
know only the actual occupation of charging points at the time when they are choosing a charging
station. Tests show a gap between optimization and uncoordinated charging. We suggest a network
flow model that allows us to study the gap and properties of the location-scheduling problem. We
also show that the network flow model can be formulated as the IP model.
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1 Introduction

Advances in battery technologies and decreasing prices of electric vehicles (EVs) stimulate more
interest in converting large fleets of vehicles into electric. Benefits could be considerable due to high
utilization of such vehicles. Recently, mathematical optimization has been often proposed to support
the design of charging infrastructure. The special class of models was developed to cover trajectories
of vehicles [1, 6]. This approach is applicable in the design of the charging infrastructure along
motorways to cover long distance trips. The extension of this approach that considers multiple paths
connecting origins and destinations of trips was proposed in [8].

We assume that the operation of the fleet should remain unaffected, i.e. for the recharging of batteries
only parking events are used. Here we propose an extension of the approach [4, 5], where optimiza-
tion can select vehicles that are successfully converted to electric, we consider charging points with
different charging speeds and evaluate the role of available information when choosing a charging
point.

We propose a mixed integer programming (MIP) model of the problem (Section 2). To investigate the
role of available information for the MIP model, we introduce a procedure for uncoordinate charging
of vehicles (Section 3). The results of numerical experiments can be found in Section 4. It follows
from the experiments that the MIP model represents minimal requirements for charging infrastructure.
We suggested an integer programming (IP) model (Section 5) and equivalent flow model (Section 6)
to analyse further behaviour of the proposed problem.

2 Mathematical model

The fleet of vehicles is represented by the set C and each vehicle is equipped with a battery of
capacity β (for simplicity, we suppose that all vehicles have the same capacity that determines the
maximum driving range). The set of candidate locations to locate charging stations is denoted by I .
We discretise the time by dividing it into the set of non-overlapping intervals T of equal size. For
each vehicle c ∈ C, we extract from GPS data an ordered sequence of parking events Rc and Ncr

denotes the list of time intervals t ∈ T that have an overlap with the parking event r ∈ Rc. To simplify
notation, for each vehicle we add to Rc the fictional introductory parking event 0 and fictional terminal
parking event rc. The set of charging speeds is denoted by S (here we consider |S| = 3). The price
to build a charging point of type s ∈ S is ps and γ denotes large positive constant. From GPS data
we extract driving distances and we estimate the battery capacity consumption when vehicle c ∈ C
drives towards stop r ∈ Rc as urc ≥ 0. act ∈ 〈0, 1〉 is the fraction of the time interval t ∈ T when
vehicle c ∈ C is parking. To simplify the description of the model, we define Bitc ∈ {0, 1}, where
Bitc = 1 if vehicle c ∈ C is parking closer than the distance ρmax from location i ∈ I during the time
interval t ∈ T , and Bitc = 0 otherwise.

Decisions are described by the following variables:

• wis ∈ Z+ represents the number of charging points of charging speed s ∈ S allocated to station
i ∈ I ,

• zc ∈ {0, 1}, when vehicle c ∈ C exceeds driving range and thus cannot be successfully con-
verted to electric zc = 1, otherwise zc = 0,

• xcts ∈ {0, 1}, if vehicle c ∈ C is being charged with speed s ∈ S during the time interval
t ∈ T , then xcts = 1, and otherwise xcts = 0,
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• qcts ≥ 0 represents the part of interval t ∈ T when vehicle c ∈ C is being charged with speed
s ∈ S,

• dcr ≥ 0 corresponds to the state of charge of the vehicle c ∈ C at the beginning of the parking
event r ∈ Rc.

We consider the objective function minimizing the number of vehicles that exceed driving range, i.e.:

Minimize
∑

c∈C

zc (1)

subject to
∑

c∈C

Bitcxcts ≤ wis for i ∈ I, t ∈ T, s ∈ S (2)

dc0 ≤ 0.5β + zcγ for c ∈ C (3)

dc,rc + zcγ ≥ 0.5β for c ∈ C (4)

dcr +
∑

s∈S,t∈Ncr

qctss ≤ β for c ∈ C, r ∈ Rc − {0} (5)

dcr ≤ dc,r−1 − ucr +
∑

s∈S,t∈Nc,r−1

qctss+ zcγ for c ∈ C, r ∈ Rc − {0} (6)

∑

s∈S

xcts ≤ 1 for c ∈ C, t ∈ T, s ∈ S (7)

qcts ≤ xctsact for c ∈ C, t ∈ T, s ∈ S (8)
∑

i∈I,s∈S

wisps ≤ G (9)

Constraints (2) make sure that at each station and each time interval we cannot use more charging
points of a given type than available. Constraints (3) (constraints (4)) ensure that initial (final) state of
charge of each vehicle is not more (less) than 50% of the battery capacity. Constraints (5) make sure
that the battery capacity cannot be exceeded. Constraints (6) ensure the contiguity in charging and
discharging of vehicles. Constraints (7) make sure that a vehicle cannot be charged simultaneously at
more than one speed. Constraints (8) ensure that a vehicle is being charged within the time interval
t ∈ T only when vehicle is parking and xcts = 1. Finally, constraint (9) keeps the costs to set up the
charging infrastructure to be less or equal than the budget limit G.

3 Evaluating the role of available information

In previous section, we supposed that complete information about requests of customers has been
available. But reality is often different, hence, to evaluate designs of charging stations found by the
model, we consider approach, which works with uncoordinated charging strategy where the users
know only the occupancy of charging stations when they chose a charging station, but have no infor-
mation on when the charging stations are freed. The set of charging stations found by model (1)-(9)
is denoted by I . Ki is the set of charging points placed at station i ∈ I (we suppose that 0 6∈ Ki and
we set kmax = 0). R = ∪c∈CRc is the set of possible charging events, P is the set of movements of
vehicle, and E = R ∪ P is the set of all events. The charging speed of point k ∈ Ki is denoted as sk.
If e ∈ P , then l(e) is the driving distance.Thus, we assume that vehicles are in one of the two modes,
either parking or driving. Vehicle associated with event e ∈ E is denoted by c(e). The start time and
the end time of the event e ∈ E are denoted by b(e) and z(e), respectively. Level of the battery of
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vehicle c ∈ C is dc. Value ρmax is the maximum acceptable proximity of a vehicle from a station
to make the charging still possible, and Tk is the end time of the most recent charging event at point
k ∈ Ki, for i ∈ I .

3.1 Evaluation procedure

We evaluate the performance of charging infrastructure by running the following algorithm:
Step 1: (Initialization)
For c ∈ C set dc = β/2. Order events from E ascendingly with respect to b(e). Set Tk = 0 for
k ∈ Ki and i ∈ I .
Step 2: (Event list processing)
For each e ∈ E do:

If e ∈ R, then order the set I descendingly with respect to the sum of speeds sk over charging
points k ∈ Ki that are free in time b(e).
For i ∈ I do:

If the distance of vehicle c(e) at time b(e) from station i is less than ρmax, then process the
charging event following an uncoordinated charging strategy.

If e ∈ P , then set dc(e) = dc(e) − l(e).
Step 3: (Evaluation)
Evaluate feasibility of all vehicles for c ∈ C. If dc ≥ 0 all the time during the run of the algorithm
and dc ≥ β/2 at the time when the algorithm is terminated, then c ∈ C is feasible.
Output of the procedure are decisions about feasibility of each vehicle.

Strategy of uncoordinated charging

We suppose that drivers have only information about the occupancy of charging points and unplug
their vehicles at the time of departure for the next trip.

Find kmax ∈ argmax(sk)
1, where k ∈ Ki and Tk ≤ b(e).

If kmax 6= 0:

Set dc(e) = min{β, dc(e) + (z(e) − b(e))skmax
}. Set Tkmax

= z(e), kmax = 0 and continue with
step 2, and process the next event.

4 Numerical experiments

In the case study, we consider the fleet C of 500 taxicabs operating in the area of great Stockholm,
in Sweden, whose positions were recorded from 01/May/2014 until 14/May/2014. Each vehicle
reported on average every 90 seconds its id, GPS position, time-stamp and information whether it is
hired or not.2 When solving optimization model we split the time period covered by the data into
the set T of 1344 time intervals, each of length 15 min. We used GPS data to deduce two sets of
candidate locations (with |I| = 5 and |I| = 20), the sets Rc, Ncr and P using the procedure described
in [5], while setting parameters Vmax = 0.1 m/s and M = 150. To test the proposed approach, we
performed numerical experiments with the following values of parameters: the driving range of all
vehicles was set to β = 300 km and vehicles can be charged only if they park closer than ρmax = 500

1If argmax returns a non-empty set, then kmax can be an arbitrary element from this set.
2 Data have been provided by M. Cebecauer from KTH Royal Institute of Technology in Stockholm.
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Fig. 1. The number of feasible vehicles as a function of budget limit G obtained
by solving the optimization model and applying the evalution procedure using

uncoordinated charging strategy, each for |I| = 5 and |I| = 20. The values
achieved for the largest value of G remain further unchanged when G is

increased.

metres from the charging station. We considered three types of charging points characterized by the
set of charging speeds S = {5.3, 21.3, 74.6} km/hour (we call them slow, medium and fast) and the
corresponding set of installation costs p = {500, 2 500, 25 000} USD.

For |I| = 5 (|I| = 20) and unlimited budget G, we obtained 8 (2) slow, 15 (5) medium and 16 (21)
fast charging points. In Figure 1, we show the dependency between the number of feasible vehicles
obtained from mathematical model and obtained by running the evaluation procedure of uncoordi-
nated charging as a function of the budget limit G. Gap between results obtained by the optimization
model and unccordinated charging strategy gives an idea about the role of available information. The
number of feasible vehicles that can be turned into electric is systematically significantly higher for
the optimization model. The optimization model assumes availability of perfect information about
other vehicles, when drivers choose a charging stations. While in the case of uncoordinated charging
strategy, information about other vehicles is limited to the occupancy of charging stations only.

5 Discrete model

Our results indicate that this approach can be used to estimate the minimal requirements to set up the
charging infrastructure. When we want to better explain the gap between optimization and uncoor-
dinate charging procedure, we need to understand the behaviour of the studied problem. This is the
reason, why we simplify and suggest an IP model, which has very similar structure, but it is posed
differently. We do not look for the maximum number of vehicles that can be served by the limited
charging infrastructure, but for a given number of vehicles we search for a minimal infrastructure that
can serve all vehicles. We work with the following variables: yi ∈ {0, 1}, where yi = 1 when a
charging station is placed at the location i ∈ I and yi = 0 otherwise; xct ∈ {0, 1}, where xct = 1
when vehicle c ∈ C is charged during the time interval t ∈ T and xct = 0 otherwise; and dcr ∈ Z+

0

is the distance that the vehicle c ∈ C is able to drive at the beginning of the parking event r ∈ Rc.
Constant β is the capacity of battery, m is the maximum number of charging points. We estimate the
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Fig. 2. Diagram illustraiting parking events that represent charging opportunities
(thick horizontal lines) and transfer of vehicles between charging stations (thin

diagonal lines).

battery capacity consumption when vehicle c ∈ C drives towards stop r ∈ Rc as urc ∈ Z+.

Minimize
∑

i∈I

yi (10)

subject to
∑

c∈C

Bitcxct ≤ myi for i ∈ I, t ∈ T (11)

dcr +
∑

t∈Nc,r

xct ≤ β for c ∈ C, r ∈ Rc ∪ {rc} (12)

dcr ≤ dc,r−1 − ucr +
∑

t∈Nc,r−1

xct for c ∈ C, r ∈ Rc ∪ {rc} (13)

In the objective function (10), we minimize the number of charging stations. Constraints (11) ensure
that we cannot use more charging points at each location and in each time interval than available.
Constraints (12) ensure that battery capacity is never exceeded and constraints (13) ensure the conti-
guity of charging and discharging of batteries.

6 Flow model

In [2], we introduced a flow model approximating this problem. In this section we amend the model
to be equivalent with IP model. We construct a network G. The set of vertices of G is the union of
the sets:
V1 = {vit : i ∈ C, t ∈ T}, where vit represents the vehicle i in time t,
V2 = {uit : i ∈ I, t ∈ T} ∪ {wit : i ∈ I, t ∈ T}, where uit and wit represent the candidate location i
in time t,
V3 = {s, z, w}, where s is the source, z is the sink and w an additional vertex of the network.

The set of edges of G is the union of the sets:
E1 = {(s, vi,1) : i ∈ C},
E2 = {(s, ui,1) : i ∈ I},
E3 = {(vi,t−1, vi,t) : i ∈ C, t ∈ T − {1}} ∪ {(vi,n, z) : i ∈ C, n = max(T )},
E4 = {(ui,t−1, ui,t) : i ∈ I, t ∈ T − {1}} ∪ {(ui,n, z) : i ∈ I, n = max(T )},
E5 = {(ui,t, wi,t) : i ∈ I, t ∈ T} ∪ {(wi,t, ui,t+1) : i ∈ I, t ∈ T − {n}} ∪ {(wi,n, z) : i ∈ I},
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E1 〈β, β〉 E5 〈0, m〉
E2 〈0, |T |〉 E6 〈0, 1〉
E3 〈0, β〉 E7 〈1, 1〉
E4 〈0, |T |〉 E8 〈0,∞)

Tab. 1. Lower and upper bounds for the flows on edges.

E6 = {(wi,t, vj,t) : i ∈ I, t ∈ T, j ∈ C,Bi,t,j = 1},
E7 = {(vj,t, w) : j ∈ C, t ∈ T,

∑
i∈I}Bi,t,j = 0,

E8 = {(w, z)}.
Every edge has assigned to it a lower and upper bound for the flow, which are represented by the
interval 〈l, u〉. These bounds are given in Table 1. It is possible to show that the optimal solution
of IP model is equivalent to the feasible flow in G with the minimum number of non-zero flows on
the edges of the set E2. We will call this problem: a sparse feasible flow. If the flow on the edge
(s, ui,1) ∈ E2 is non-zero, then we place a charging point in location i. Problems of finding a feasible
flow in the network with lower bounds on edges and its minimisation are solvable in polynomial time
[3]. We suppose that the problem to find a sparse feasible flow in network is NP -hard problem.
Hence we suggest heuristic method to solve it:
Description of the algorithm. We construct a network G′ (it is subnetwork of G):
Its vertex set is V ′

1 ∪ V ′

2 ∪ V ′

3 , where
V ′

1 = {vi,t : i ∈ C, t ∈ T} ∪ {z},
V ′

2 = {ui,t : i ∈ I, t ∈ T} ∪ {wi,t : i ∈ I, t ∈ T}.
The edge set is the union of the sets:
E ′

1 = {(vi,t−1, vi,t) : i ∈ C, t ∈ T − {1}} ∪ {(vi,n, z) : i ∈ C},
E ′

2 = {(ui,t−1, ui,t) : i ∈ I, t ∈ T − {1}},
E ′

3 = {(ui,t, wi,t) : i ∈ I, t ∈ T} ∪ {(wi,t, ui,t+1) : i ∈ I, t ∈ T − {n}} ∪ {(wi,n, z) : i ∈ I},
E ′

4 = {(wi,t, vj,t) : i ∈ I, t ∈ T, j ∈ C,Bi,t,j = 1},
E ′

5 = {(ui,n, z) : i ∈ I, n = max(T )}.
Lower and upper bounds of the edges are taken from G.

Algorithm.
Input is the network G with feasible flow x and subnetwork G′.
For each pair of vertices ui,2, uj,2 ∈ V2 such that 0 < x(s, ui,2) ≤ x(s, uj,2) < |T | do:

while there is an augmenting path P (j, i) with reserve r from uj,2 to ui,2 in G′ do:

add the edges (s, uj,2) and (s, ui,2) to P (j, i) to form a (non-oriented) cycle
C = (s, uj,2, . . . , ui,2, s),
change the flow x in C as follows:
if (u, v) is the forward edge in C, then x(u, v) = x(u, v) + r,
if (u, v) is the reverse edge in C, then x(u, v) = x(u, v)− r,

process another pair of vertices.

Output is a new feasible flow.

A polynomial algorithm for finding an augmenting path in network is presented in [7].
This approach does not guarantee that given solution is optimal. We aim to test the algorithm and
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Fig. 3. Diagram from Example 1.
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Fig. 4. Network G from Example 1.

study its properties in our future works.

Example 1.
To illustrate, how the graph G can be constructed, we consider situation with two vehicles, two
candidate locations and five time intervals as can be seen in Figures 3 and 4. Existence of a path
uk,j → wk,j → vi,j means that the vehicle i is parking in location k at the time interval j.
What is the cause of the gap in the number of feasible vehicles obtained from the optimization prob-

lem and simulation procedure?
We suppose that the main reason is in the available information. When we use an optimization al-
gorithm, we work with the whole network G. However, in the simulation procedure, at time t ∈ T ,
we only have information about edges which start in vertices ui,t. These constraints do not allow us
to find an optimal solution by the evaluation procedure. The open questions are: How do we design
the charging infrastructure especially in cases when the limited level of information is given? How
can we spread the available information (from O-D matrices, probability models) to obtain a lower
number of unfeasible vehicles?
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7 Conclusions

Our results indicate that optimization is able to serve significantly more vehicles than uncoordinated
charging strategy. Being motivated by the goal to explain this differences we introduced simpler IP
model and associated flow model. Initial study of model properties helped us to gain intuition about
the gap between optimization and simulation of charging. We expect that better understanding of the
behaviour of these models could lead to computationally more efficient solving methods.
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