
DO IMPORTANT NETWORK ACTORS FORM IMPORTANT TIES?
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Abstract. In this contribution, we analyze the location of vertices and edges with respect to 
maximum betweenness centrality within a graph. We present a construction of graphs where the 
distance of the set of vertices and the set of edges with the maximum betweenness (the 
betweenness separation) can be arbitrarily high, together with sufficient conditions for graphs in 
which this distance is zero. We also discuss the betweenness separation in real-world networks 
and several models of pseudo-random graphs which use to model complex networks.
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1 Introduction
Throughout this paper, we consider connected simple graphs (without loops or multiple edges). In a
graph G = (V,E), the distance dG(u, v) of two vertices u, v ∈ V is the length of the shortest u− v-
path in G. For two sets X, Y ⊆ V , we define dG(X, Y ) = min

u∈X,v∈Y
dG(u, v). The diameter diam(G)

of G is the largest distance of vertices of G. Other notation and terminology used here is taken from
[12].

When analyzing a social network from the point of view of information spreading, one is interested
in determining both the actors through which the most of information flows (because then they get
more informed and have more possibilities to control this flow) as well as the links most frequently
used in mutual actor communication (because its breaking can badly influence the access of actors to
information). As suitable measure of amount of information flow through actors and links, one may
consider betweenness centrality indices, which are defined in the following way (see [3] and [7]): for
a vertex x and an edge yz of a graph G = (V,E), the vertex betweenness of x is

BG(x) =
∑
u,v∈V
u6=x6=v

σG
u,v(x)

σG
u,v
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where σG
u,v is the number of shortest paths of G between two distinct vertices u, v and σG

u,v(x) is the
number of those shortest u − v-paths in G having x as an internal vertex (the subscript is omitted if
G is clear from context). The edge betweenness of yz is

BG(yz) =
∑
u,v∈V

σG
u,v(yz)

σG
u,v

where σG
u,v(yz) is the number of those shortest u − v-paths of G that pass through yz (here u and v

may coincide with y, z). These invariants are often applied in social network analysis and, also, their
graph-theoretical properties are recently investigated, see [4], [5], [10] and the survey chapter [6].

Within a network, an actor with the highest betweenness appears on many shortest paths, and thus
one might expect that, of the links that this actor forms, some shall have high edge betweenness
too (or, less formally, important actors should form also important links). Formally, we quantify
the "closeness" of vertices and edges with the maximum vertex / edge betweenness in a graph G by
betweenness separation Ã(G) which is equal to the distance dG(Bv(G),Be(G)) where Bv(G) is the
set of all vertices of G with the maximum vertex betweenness, and Be(G) is the set of endvertices
of all edges of G with the maximum edge betweenness. While we show that, in general, the value
of Ã(G) may be arbitrarily large, we present the results of computations on large collections of
graphs randomly generated according to particular graph distributions which suggest that, for real-
world networks, the above paradigm is often true or, at least, the vertices and edges of maximum
betweenness are not too distant.

2 Theoretical results
In this section, we present several results on the values of Ã for graphs in general.

Example 1: Consider the graph K−−n (n ≥ 5) obtained from the complete graph Kn on the vertex
set {v1, . . . , vn} by deleting its two nonadjacent edges, say v1v2 and v3v4. Observe that only two
pairs of vertices – namely, {v1, v2} and {v3, v4} – add a positive contribution (equal to 1

n−2 ) to the
betweenness of a vertex of K−−n ; thus, the betweenness of vertices of K−−n is 2

n−2 or 1
n−2 , and there

are n − 4 vertices of maximum betweenness (the ones with the maximum degree). Similarly, for an
edge vivj of K−−n , the only positive contributions to its edge betweenness come from the pair {vi, vj}
(the value 1) and, possibly, from the pairs {v1, v2} and {v3, v4} (each with the value 1

n−2 ). We then
conclude that the maximum betweenness of edges of K−−n is 1+ 1

n−2 +
1

n−2 = n
n−2 and is attained for

the four edges with endvertices from {v1, v2, v3, v4}. This example also shows that the betweenness
separation can be nonzero even in very dense graphs. �

Next, we present the construction of graphs which have arbitrarily large betweenness separation.

Example 2: Given positive integers n, d ≥ 2, let Bn,d be the graph obtained from the n-vertex path
x1x2 . . . xn by connecting the vertex xn to d new vertices y1, . . . , yd. By routine calculations, we
compute the betweenness of vertices and edges of Bn,d:

B(x1) = B(yi) = 0 for each i = 1, . . . , d,
B(xi) = (i− 1)(n+ d− i) for each i = 2, . . . , n− 1,
B(xn) =

(
d
2

)
+ d(n− 1),

B(xnyi) = n+ d− 1 for each i = 1, . . . , d,
B(xixi+1) = i(n+ d− i) for each i = 1, . . . , n− 1
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Let k be a positive integer. Choose now n, d such that n − d > 2(k + 1) and d > n
2
. Then the

maximum edge betweenness is attained for the edge xixi+1 with i = n+d
2

if n + d is even, or for
the pair of edges xi−1xi, xixi+1 with i = n+d−1

2
otherwise. Furthermore, for i = 2, . . . , n − 1,

the maximum of B(xi) is equal to
(
n+d−1

2

)2 being attained for i = n+d+1
2

; the condition d > n
2

now implies that, for i = 2, . . . , n − 1, B(xn) − max
i=2,...,n−1

B(xi) ≥
(
d
2

)
+ d(n − 1) −

(
d+n+1

2

)2
=

d2

4
+ dn

2
− d− n2

4
+ n

2
− 1

4
> n2

16
− 1

4
≥ 0 since n ≥ 2. Thus xn has the maximum vertex betweenness

among all vertices ofBn,d. The distance of the vertex xn and the maximum betweenness edge is equal
to n−

(
n+d
2

+ 1
)
= n−d−2

2
> k. �

On the other hand, the betweenness separation of many graphs is equal to zero. This is clearly true
for vertex-transitive or edge-transitive graphs, and for nontransitive graphs of many specific families.
For example, examining (by help of Wolfram Mathematica) the grids (that is, the Cartesian products
Pm�Pn of two paths on m and n vertices), one finds that the set Bv(Pm�Pn) consists either of the
single vertex, or pair of adjacent vertices, or else four vertices forming 4-cycle (depending on whether
m,n are both odd, or exactly one of them is odd, or both are even), which corresponds to Cartesian
product of graphs induced by Bv(Pm) and Bv(Pn) (the central vertex or the pair of central vertices
in path). Similarly, one finds that Be(Pm�Pn) consists either of four edges with common endvertex
(when m = n is odd), or four edges forming 4-cycle (when m = n is even), or two nonadjacent
edges (when m 6= n, both being even), or two adjacent edges (when m 6= n, both being odd), or else
a single edge. In each case, one obtains Ã(Pm�Pn) = 0. An analogous behaviour may be observed
also in higher–dimensional grids.

The above observations for grids suggest the following sufficient condition for zero betweenness
separation:

Lemma 1 Let G be a connected k-regular graph such that the subgraph induced on Be(G) contains
k edges with a common vertex. Then Ã(G) = 0.

Proof: We use the fact (see [6]) that, for any vertex x ∈ V (G),

B(x) =
1

2

 ∑
xy∈E(G)

B(xy) + 1− |V (G)|

 .

From this, it follows that max
x∈V (G)

∑
xy∈E(G)

B(xy) is attained for a vertex z of Be(G) having k neighbours

in Be(G); thus z has the maximum betweenness among vertices of G and is incident with edges of
maximum edge betweenness. �

In this lemma, the number of k maximum betweenness edge with a common vertex cannot be de-
creased – the cubic graph G on Figure 1 has Bv(G) = {8, 10} and Be(G) = {{3, 7}, {7, 12}}.

The comparison of sets of graph elements with maximum betweenness in graphs and their Cartesian
products might also suggest that, for any connected graphs G and H , Bv(G�H) = Bv(G) × Bv(H)
and Be(G�H) ⊆ Be(G)× Be(H) (the symbol × here refers to Cartesian product of sets). However,
these relations are not true in general: in the graph on Figure 2, Bv(G) = {1} and Be(G) = {{1, 5}}
while Bv(G�K2) = {2, 9} and Be(G�K2) = {{2, 9}} (the vertex 9 being the counterpart of the
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Fig. 1. A cubic graph G with Ã(G) = 0 with Be(G) consisting of two adjacent
edges
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Fig. 2. A graph G whose Bv(G) and Be(G) does not extend to Bv(G�K2) resp.
Be(G�K2)

vertex 2 in the second copy of G in G�K2). Using the Wolfram Mathematica computer algebra
system, we have verified that this is the unique smallest graph with such property.

These relations are generally not true even for trees, as seen from the example on Figure 3: here
Bv(T ) = {6} while Bv(T�K2) = {1, 16} (the vertex 16 being the counterpart of the vertex 2 in the
second copy of T in T�K2). We have also verified that this is the smallest tree with such property,
besides other three trees on the same number of vertices.
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Fig. 3. A tree T whose Bv(T ) does not extend to Bv(T�K2)

More precise information on values of vertex betweenness in graph prisms is provided by

Theorem 2 Let G be a connected graph and x ∈ V (G�K2). Then

BG�K2(x) = 2BG(x) +
∑

u,v∈V (G)\{x}

(
1

dG(u, v) + 1

)
σG
u,v(x)

σG
u,v

+
∑

u∈V (G)\{x}

1

dG(u, x) + 1
.

Proof: Set H = G�K2 with V (H) = V (G1) ∪ V (G2) where G1, G2 are layered copies of G in
H . Without loss of generality, let x = x1 ∈ V (G1), x2 ∈ V (G2) be the counterpart of x in G2 (in
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general, to distinguish the vertices of G1 and G2 which are counterparts of each other, we will use
subscripts 1 and 2). Then

BH(x) =
∑

u,v∈V (H)\{x}

σH
u,v(x)

σH
u,v

=
∑

u,v∈V (G1)

σH
u,v(x)

σH
u,v

+
∑

u,v∈V (G2)

σH
u,v(x)

σH
u,v

+
∑

u∈V (G1),v∈V (G2)

σH
u,v(x)

σH
u,v

=

A+B + C.

If u, v ∈ V (G1) then all shortest u− v-paths in H are contained in G1, thus

A =
∑

u,v∈V (G1)

σH
u,v(x)

σH
u,v

=
∑

u,v∈V (G1)

σG1
u,v(x)

σG1
u,v

= BG(x)

and (because x ∈ V (G1))

B =
∑

u,v∈V (G2)

σH
u,v(x)

σH
u,v

= 0.

Now write

C =
∑

u∈V (G1),v∈V (G2)

σH
u,v(x)

σH
u,v

=
∑

u∈V (G1)\{x},v∈V (G2)\{x}

σH
u,v(x)

σH
u,v

+
∑

u∈V (G1)\{x}

σH
u,x2

(x)

σH
u,x2

If σG
u,v(x) = 0 for some u, v ∈ V (G), then σH

u1,v2
(x) = 0. Let σG

u,v(x) > 0 and dG(u, v) = d = i + j
where i = dG(u, x) and j = dG(x, v). Then σH

u1,v2
= (d+ 1)σG

u,v (because any shortest u− v-path of
G may be considered as a "projection" of certain d + 1 shortest u1 − v2-paths of H) and, similarly,
σH
u2,v1

= (d+ 1)σG
u,v, σ

H
u1,v2

(x) = (j + 1)σG
u,v(x), σ

H
u2,v1

(x) = σG
u,v(x). Hence

∑
u∈V (G1)\{x},v∈V (G2)\{x}

σH
u,v(x)

σH
u,v

=
∑

u,v∈V (G)\{x}

(
j + 1

d+ 1
·
σG
u,v(x)

σG
u,v

+
i+ 1

d+ 1
·
σG
u,v(x)

σG
u,v

)
=

∑
u,v∈V (G)\{x}

d+ 2

d+ 1
·
σG
u,v(x)

σG
u,v

= BG(x) +
∑

u,v∈V (G)\{x}

1

d+ 1
·
σG
u,v(x)

σG
u,v

Moreover, for each u1 ∈ V (G1), exactly one shortest u1 − x2-path passes through x, so

∑
u∈V (G1)\{x}

σH
u,x2

(x)

σH
u,x2

=
∑

u∈V (G1)\{x}

1

d(u, x) + 1
.

Summing the obtained expression for A,B,C then yields the result. �

Note that, in the above expression for BG�K2(x), the middle and the last sum are very similar to
length-scaled betweenness centrality (introduced in [2], see also [6]) and the reciprocal centrality
(see [9]) – indeed, their denominators differ just by the additive factor 1. Thus, the mutual relation
of Bv(G�K2) and Bv(G) is influenced by the mutual location of the central vertices with respect to
betweenness, length-scaled betweennes and the reciprocal centrality (where one can expect that there
exist graphs in which the sets of those central vertices are mutually disjoint).
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Network Ã diameter order size
ZacharyKarateClub 0 5 34 78

DolphinSocialNetwork 0 8 62 159
DavisSouthernWomen 1 4 32 89

EurovisionVotes 1 ∞ 46 467
JazzMusicians 1 6 198 2742
LesMiserables 0 14 77 254

September11Terrorists 0 5 37 85
TaggedTestImages 3 8 71 188
USPoliticsBooks 2 7 105 441
WordAdjacencies 0 5 112 425
WorldCup1988 0 ∞ 35 118

AmericanCollegeFootball 2 4 115 613

Tab. 1. Betweenness separation of selected real-world networks (the individual
networks are obtained, in Wolfram Mathematica, by evaluating the command
ExampleData[{"NetworkGraph","<network_name>"}] where

<network_name> is an entry from the first column)

3 Experimental results
It is interesting that, for many real-world networks, the betweenness separation is zero or very small
compared to network characteristics. This claim is supported by exhibiting the selected graphs from
the collection of example graphs provided by Wolfram Research data server (their full list can be
obtained, in environments supporting Wolfram Language (like Wolfram Mathematica or Wolfram
Programming Lab), by evaluating the procedure ExampleData ["NetworkGraph"]; in total,
there are 228 networks, and we studied those ones having not many vertices). The obtained results
are summarized in Table 1.

In addition, we tested large collections of graphs generated for various graph distributions, some of
them being related to real-world networks. Particularly, three graph distributions were considered:

• Uniform graph distribution with parameters n,m – corresponds to the set of all graphs on n
vertices and m edges.

• Bernoulli graph distribution with parameters n, p – the graphs are constructed from n indepen-
dent vertices by selecting each edge independently with probability p.

• Barabási-Albert graph distribution with parameters n, k – the graphs are constructed by con-
secutive adding new vertices of degree k (as an initial graph, one can take, for example, a
(k + 1)-cycle) until reaching n vertices in total in such a way that the k edges of the newly
added vertex are attached to existing vertices at random, but with the probability proportional
to the number of edges that the existing nodes already have.

For each of these graph distributions, we generated, using pseudo-random generating procedures
provided by Wolfram Mathematica, lists of 10000 graphs on 30 and 60 (and, for the Barabási-Albert
distribution, on 120) vertices. The numbers of vertices were chosen to reach a compromise between
the performance of betweenness separation testing algorithm and the need to work with large number
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of not-so-trivial graphs (while sparse graphs were relatively easy to handle, for random graphs with
high edge density, the algorithm has performed slowly). The lists were generated in straightforward
way by evaluating the commands RandomGraph[{m,n},10000] for pseudo-random graphs on
n vertices and m edges, and

Table[RandomGraph[BernoulliGraphDistribution[n, p]],10000]

or

Table[RandomGraph[BarabasiAlbertGraphDistribution[n,k]],10000]

for random n-vertex graphs with edge probability p or n-vertex graphs resulted from Barabási-Albert
process, respectively. For uniform graph distribution, we have also chosen different values of m (50,
100, 200, 300, 400 and

(
30
2

)
− 2 for 30-vertex graphs, and twice much edges for 60-vertex graphs)

and, for Bernoulli graph distribution, four edge probabilities p (0.1, 0.25, 0.5 and 0.75). The Barabási-
Albert graph distribution was considered with parameter k = 2, 3, 5, 10.

The histograms for distribution of Ã(G) in uniform distribution-generated graphs are shown on Figure
4. One may observe that Ã is small in general, and tends to be mostly 0 for sparse graphs. But, when
a graph gets more edges, its betweenness separation increases, reaching eventually a peak for certain
edge density after which its values decrease again; if a graph G is just two edges apart from the
complete one, then Ã(G) ∈ {0, 1} with majority of graphs having the value 1. This is consistent with

the fact that the fraction of labelled n-vertex graphs with
(
n
2

)
− 2 edges is equal to

1
2

(
n
2

)(
n−2
2

)((n2)
2

) → 1

for n→ +∞.

Figure 5 contains the results for randomly generated graphs with different edge probability. The
simulations suggest that the edge probability at least 1

2
yields the betweenness separation equal to 1

for majority of random graphs regardless on the number of vertices; for low probabilities, however,
the frequency of individual values for Ã(G) seems to depend also on the order of G. Nevertheless,
the overall values again tend to be small.

For pseudo-random graphs generated from Barabási-Albert graph distribution (see Figure 6), one can
also observe the trend for small values of Ã, with majority of graphs having zero value; nevertheless,
with the increasing degree of vertices being added, significant portion of graphs posesses nonzero
values.

4 Concluding remarks
The above results show that to answer the question in this paper’s title is not easy if we choose the
betweenness as the measure of importance of actors and ties. The situation perhaps might be less
complicated under another centrality measure, however, one has to consider the vertex centrality
which also extends, in some generic way, to the edges. So far, we are aware only of one other
such centrality, namely the current-flow betweenness, see [1]. It would be interesting to consider an
analogue of vertex closeness C(x) (defined as the reciprocal of the sum of distances from selected
vertex x to every other vertex) for edges (could be defined, for example, as the sum of closenesses
of edge endvertices, or as the sum of all distances from the set of ednvertices of given edge to sets
of endvertices of all other edges) and to define, in similar way as at the beginning of Section 2, the
closeness separation between the graph elements of the maximum closeness in connected graphs.

Note that, in contrast with Theorem 2, it is easy to show that CG�K2(x) =
1

2 1
CG(x)

+ |V (G)|
and

266



0 1 2 3 4
0

1000
2000
3000
4000
5000
6000

n=30,m=50

0 1 2 3 4
0

1000

2000

3000

4000

n=30,m=100

0 1 2 3 4
0

1000

2000

3000

4000

5000

n=30,m=200

0 1 2 3 4
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

n=30,m=300

0 1 2 3 4
0

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

n=30,m=400

0 1 2 3 4
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

n=30,m=433

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

n=60,m=100

0 1 2 3 4 5
0

1000

2000

3000

4000
n=60,m=200

0 1 2 3 4 5
0

1000

2000

3000

4000
n=60,m=400

0 1 2 3 4 5
0

1000

2000

3000

4000

n=60,m=600

0 1 2 3 4 5
0

1000
2000
3000
4000
5000
6000
7000

n=60,m=800

0 1 2 3 4 5
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

n=60,m=1768

Fig. 4. Histograms for uniformly generated graphs
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Fig. 5. Histograms for random graphs
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Fig. 6. Histograms for graphs of Barabási-Albert distribution

thus, the set of vertices of highest closeness in G naturally lifts into analogous set in the prism of G;
therefore, one might hope that the use of closeness centrality instead of betweenness would result in
problems being easier to handle.

As the betweenness centrality is often used in analyses of biological networks like protein-protein
interaction networks (see for example [8]), it would be interesting to examine the betweenness sepa-
ration of them. The relative sparsity of some of these networks would allow the reasonable use of our
developed Wolfram Mathematica framework; note, however, that for more complicated examples,
one should probably use, instead of built-in betweenness algorithms, a more efficient code.
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