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Abstract. When we study structure of the most used artificial neural network -  multilayer 
perceptron and functionality of artificial n euron, t here i s p ossibility u sing s everal w ays to 
describe function and neural network properties on the basis of known algebraic structures, 
vector spaces and graphs theory or properties of relations. Using certain analogy with relations 
between descriptions of differential equations certain quality there is developed access to 
new view point on these subjects. In this paper some concepts of description and modelling 
systems of neurons are investigated.
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1 Introduction
The beginning of the establishment of neural networks is considered to work Warren McCulloch and
Walter Pitts of 1943, which created a very simple mathematical model of a neuron, which is the basic
cell of the nervous system [3, 13, 14, 25]. The numerical values of the parameter in this model were
predominantly bipolar, i.e. from the set {−1, 0, 1}. They showed that the simplest types of neural
networks can in principle compute any arithmetic or logic function.

A neuron called also as artificial or formal neuron is the basic stone of the mathematical model of any
neural network. Its design and functionalites are derived from observation of a biological neuron that
is basic building block of biological neural networks (systems) which includes the brain, spinal cord
and peripheral ganglia. In case of artificial neuron the information comes into the body of an artificial
neuron via inputs that are weighted (i.e. each input can be individualy multiplied with a weight).
The body of an artificial neuron then sums the weighted inputs, bias and "processes" the sum with a
transfer function. At the end an artificial neuron passes the processed information via outputs.

Neuron activity can be described mathematically: Capturing signal and transmission in neurons, there
is created potential P:

P = w1 ∗ x1 + w2 ∗ x2 + ...+ xn ∗ wnn
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If the potential is sufficiently large, the neuron transmits a signal y:

y = 1, if P > w0, otherwise y = 0.

The condition that P > w0 can be overridden by activating function f(P ). The entire activity
of neurons can then enroll in one mathematical relationship where w0 is a negative number that
represents the threshold that shall overcome potential. Formally, the transfer function can have a zero
threshold and a neural boundary with the negative sign being understood as the weight, the so-called
bias w0 = −θ of another formal input x0 = 1 with a constant unit value. The value of the internal
potential y_in,where

y_in =
n∑

i=1

wixi.

after reaching the value b(w0 = b− bias) it invokes the output state y of the neuron Y, axon pulse.
Increasing the output values y = y_in when the potential value of b is given by the activating (trans-
fer) function f . In general, a single-layer neural network is not capable of solving all tasks. Therefore
the most commonly used type is a multilayer feedforward network with a backpropagation learning
method. From paper focus is interesting the linear transfer function. The output of a linear transfer
function is equal to its input:

a = n,

as illustrated in Figure.

Fig. 1. Feedforward neural network and linear transfer function.

Neurons with this transfer function are used in the ADALINE networks. The output neuron expres-
sion can be written in matrix form:

y = W ∗ x + b,

where the matrix for the single neuron case has only one row. Output and input product of artificial
neurons can be the same way interpreted as vectors of input or output linear vector spaces. Now the
neuron output of multilayer neural network can be written according terms of matrix form description
as:

yn = fn(Wnfn−1(Wn−1fn−2...(W1x + b1) + b2)...+ bn)

for n-layer neural network. For further development is necessary describe basic terms from usage
linear ordinary differential operators.

Artificial neural networks can be viewed as a weghted directed graphs in which artificial neurons are
nodes and directed edges with weight are connections between neuron outputs and neuron inputs.

Recall that in the framework of Artificial neural networks perceptrons is a network of simple neurons
called percetrons. The basic concept of a single perceptron was introduced by Rosenblatt in the
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year 1958. The perceptron computes a single output from multiple real-valued inputs by forming a
linear combination according to its input weights and then possibly putting the output through some
nonlinear activation function. As usually mathematically this can be written as:

y = ϕ

(
n∑

i=1

wixi + b

)
= ϕ(~wT~̇x+ b),

where ~w = (w1, . . . , wn) denotes the vector of weights, ~x = (x1, . . . , xn) is the vector of inputs, b is
the bias and ϕ is the activation function.

2 Groups and hypergroups of linear differential operators
Let us mention from the history of sixties and seventies from the past century when Otakar Borůvka
and his collaborators and successors begun with the investigation of differential equations using the
algebraic and geometrical approach.

The substanding representative of the mentioned school František Neuman wrote in his paper [15]:
"Algebraic, topological and geometrical tools together with the methods of the theory of dynamical
systems and functional equations make possible to deal with problems concerning global properties of
solutions by contrast to the previous local investigations and isolated results." Influence of mentioned
ideas is a certain motivating factor of our investigations.

So, we consider linear ordinary differential operators of the form:

Ln =
n∑

k=0

pk(x)Dk,

where Dk = dk

dxk , pk(x) is a continuous function on some open interval J ⊂ R, k = 0, 1, . . . , n −
1, pn(x) ≡ 1, i.e.Ln(y) = 0 which is a linear homogenous ordinary differential equation of the form:

y(n)(x) +
n−1∑
k=0

pk(x)y(k)(x) = 0.

By an ordered group we mean (as usually) a triad (G, ·,≤), where (G, ·) is a group and≤ is a reflexive,
symmetrical and transitive binary relation on the set G such that for any triad x, y, z ∈ G with the
property x ≤ y also x · z ≤ y · z, z · x ≤ z · y is satisfied. Further, [a)≤ = {x ∈ G; a ≤ x} is
the principal end generated by a ∈ G. To any element a ∈ G there is assigned a pair of mappings
λa : G → G, ρa : G → G, which are called a left translation, a right translation, respectively,
determined by the element a ∈ G, i.e. λa(x) = a · x, ρa(x) = x · a.(Of course, in the case of
a commutative group (G, ·) we have λa ≡ ρa). Notice, that a group with an ordering (G, ·,≤) is
an ordered group if and only if all its left and right translations λa, ρa, a ∈ G are order-preserving
mappings, i.e. isotone selfmaps of the ordered set (G,≤).

The following lemma which is crutial for further constructions is proved in [5, 7] (the Czech version
is proved in [6], pp. 146, 147).

Lemma 1. Let (G, ·,≤) be an ordered group. Define a hyperoperation ∗ : G×G→ P(G)∗ by

a ∗ b = [a, b)≤(= {x ∈ G; a · b ≤ x})
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for all pairs of elements a, b ∈ G. Then (G, ∗) is a hypergroup which is commutative if and only if the
group (G, ·) is commutative.

Application of the above lemma and many new results are obtained in papers of Michal Novák. See
at least titles [20, 21, 22].

For present following results we use similar notation published in [7]. So there R stands for the set
of all reals, J ⊂ R is an open interval (bounded or unbounded) of real numbers, Ck(J) is the ring
(with respect to usual addition and multiplication of functions) of all real functions with continuous
derivatives up to the order k ≥ 0 including. We write C(J) instead of C0(J). For a positive integer
n ≥ 2 we denote by An the set of all linear homogeneous differential equations of the n-th order with
continuous real coefficients defined on J, i.e.

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0,

(cf. [5, 7, 14, 15, 19]), where pk ∈ C(J), k = 0, 1, · · · , n − 1, p0(x) > 0 for any x ∈ J (this is not
essential restriction). Denote L(p0, · · · , pn−1) : Cn(J) → Cn(J) the above defined linear operator
defined by

L(p0, · · · , pn−1)(y) = y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y

and put
LAn(J) = {L(p0, · · · , pn−1); pk ∈ C(J), p0 > 0}.

Further N0(n) = {0, 1, · · · , n − 1} and δij stands for the Kronecker δ, δij = 1 − δij . For any
m ∈ N0(n) we denote by LAn(J)m the set of all linear differential operators of the n−th order
L0(p0, · · · , pn−1) : Cn(J) → C(J), where pk ∈ C(J) for any k ∈ N0(n), pm ∈ C+(J), (i.e.
pm(x) > 0 for each x ∈ J). Using the vector notation ~p(x) = (p0(x), · · · , pn−1(x)), x ∈ J we can
write Ln(~p0)y = y(n) + (~p(x), (y, ý , · · · , y(n−1))), (i.e. a scalar product).

We define a binary operation "◦m" and a binary relation "≤m on the set LAn(J)m in this way:

For arbitrary pair L(~p), L(~q) ∈ LAn(J)m, ~p = (p0, · · · , pn−1), ~q = (q0, · · · , qn−1) we put L(~p) ◦m
L(~q) = L(~u), ~u = (u0, · · · , un−1), where

uk(x) = pm(x)qk(x) + (1− δkm)pk(x), x ∈ J

and L(~p) ≤ L(~q) whenewer pk(x) ≤ qk(x), k ∈ N0(n), pm(x) = qm(x), x ∈ J. Evidently,
(LAn(J)m,≤m) is an ordered set.

In paper [7] there is presented the sketch of the proof of the following lemma:

Lemma 2. The triad (LAn(J)m, ◦m, ≤m) is an ordered (noncommutative) group.

In what follows we will construct a group and hypergroup of artificial neurons using the above men-
tioned approach.

3 Groups and hypergroups of artificial neurons
As it is mentioned in the dissertation [3 ] neurons are the atoms of neural computation. Out of those
simple computational units all neural networks are build up. The output computed by a neuron can be
expressed using two functions y = g(f(w, x)). The details of computation consist in several steps: In
a first step the input to the neuron, x := {xi}, is associated with the weights of the neuron, w := {wi},
by involving the so-called propagation function f . This can be thought as computing the activation
potential from the pre-synaptic activities. Then from that result the so-called activation function
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g computes the output of the neuron. The weights, which mimic synaptic strenght, constitute the
adjustable internal parameters of the neuron. The process of adapting the weights is named learning.

From the biological point of view it is advisible to use an integrative propagation function. And
therefore convenient choice would be to use the weighted sum of the input f(w, x) =

∑
i

wixi, that

is the activation potential equals to the scalar product of input and weights. In fact, the most popular
propagation function since the dawn of neural computation, however it is ofen used in the slightly
different form:

f(w, x) =
∑
i

wixi + Θ, (∗)

The special weight Θ is called bias. Applying Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0 as
the above activation function yields the famous perceptron of Rosenblatt. In that case the function Θ
works as a threshold.

Besides (∗) there are, of course, many other possible propagation functions. If (∗) is supplemented
with the identity as activation function and real-valued domains are given a real linear neuron y =∑
i

wixi + Θ is obtained. This real linear neuron can be seen as an example of a Clifford neuron.

Denoting by Cp,q,r the unique universal Clifford algebra corresponding to a standard quadratic space
(Rp+q+r, Q), Q(x) = x2 and by ⊗p,q,r the geometric product of the algebra Cp,q,r (cf. [3] ch. 2, part
2.1) we can say that a Clifford Neuron(CN) computes the following function from (Cp,q,r)

n to Cp,q,r:

y =
n∑

i=1

wi ⊗p,q,r xi + Θ.

([3], Definition 3.1).

It is to be noted that deep neural networks contain multiple non-linear hidden layers and this makes
them very expressive models that can learn very complicated relationships between their inputs and
outputs.

To estimate networks parameters Hinton et all [25] proposed the wake-sleep algorithm. As models

serve qi = σ

(∑
j

siΦij + Φ0j

)
for the position "wake"

and pj = σ

(∑
k

skΘkj + Θ0j

)
for the position "sleep". Similar probability functions occure within

the model description of the socalled Restricted Boltzmann Machines - [25].

The formal description of the architecture of the general Neural Abstractions Pyramid contains for-
mally similar function mentioned above, given by the mathematical model of an artificial neuron. The
basic processing element consists of the Pkl projection units and a single output unit. The activity
atijkl ∈ R of the feature cell at position (i, j) for feature array k in layer l at time t is computed as
follows:

atijkl = ψkl

(
Pkl∑
p=1

vpklb
lp
ijkl + v0kl

)
.

The output unit computes a weighted sum of the projection potentials btpijkl ∈ R with the weighting
factors described by vpkl ∈ R. A bias value of v0kl is also added to the sum before it is passed through
the output transfer function ψkl.
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The computation of the individual projection potentials is described by:

btpijkl = ϕkl

Qp
kl∑

q=1

wpq
kl a

t́
í j́ ḱ ĺ + wp0

kl

 .

The processing element that computes a feature cells consists of Pkl projection units and output unit
that produces the activity atijkl. The output unit computes the weighted sum of the potentials btpijkl of
the individual projections and passes this sum through a transfer function ψkl. Each projection unit
computes the weighted sum of activities aĺ

í j́ ḱ ĺ
with the weighting factors described by wpq

kl ∈ R. The
number of contributions to a projection p is Qp

kl. In addition, a bias value of wp0
kl is added before the

sum is passed trough the projection transfer function φp
kl.

So, recall the well-known mathematical description of a formal neuron:

Let F : R → R be a general non-linear (or piece-wise linear) transfer function. Then the action of a
neuron can be expressed as this model:

y(k) = F

(
m∑
i=1

wi(k)xi(k) + b

)
,

where xi(k) is input value in discrete time k where i goes from 0 to m, wi(k) is weight value in
discrete time where i goes from 0 to m, b is bias, yi(k) is output value in discrete time k.

Notice that in some very special cases the transfer function F can be also linear. Transfer function de-
fines the properties of artificial neuron and can be any mathematical function. Usually it is chosen on
the basis of problem that artificial neuron( artificial neural network) needs to solve and in most cases
it is taken(as mentioned above) from the following set of functions: step function, linear function and
non-linear(sigmoid) function.

In what follows we will consider a certain generalization of classical artificial neurons mentioned
above consisting in such a way that inputs xi and weight wi will be functions of an argument t
belonging into a linearly ordered (tempus) set T with the least element 0. As the index set we use the
set C(J) of all continuous functions defined on an open interval J ⊂ R. So, denote by W the set of
all non-negative functions w : T → R forming a subsemiring of the ring of all real functions of one
real variable x : R→ R. Denote by Ne(~wr) = Ne(wr1, . . . , wrn) for r ∈ C(J), n ∈ N the mapping

yr(t) =
n∑

k=1

wr,k(t)xr,k(t) + br

which will be called the artificial neuron with the bias br ∈ R. By AN(T ) we denote the collection of
all such artificial neurons.

Neurons are usually denoted by capital lettersX, Y orXi, Yi, nevertheless we use also notionNe(~w),
where ~w = (w1, . . . , wn) is the vector of weights.

We suppose - for the sake of simplicity - that transfer functions (activation functions) ϕ, σ(or f) are
the same for all neurons from the collection AN(T ) or the role of this function plays the identity
function f(y) = y.

Now, similarly as in the case of the collection of linear differential operators above, we will construct
a group and hypergroup of artificial neurons.
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Denote by δij the so called Kronecker delta, i, j ∈ N, i.e. δii = δjj = 1 and δij = 0, whenever i 6= j.

Suppose Ne(~wr), Ne(~ws) ∈ AN(T ), r, s ∈ C(J), ~wr = (wr1, . . . , wr,n), ~ws = (ws1, . . . , ws,n),
n ∈ N. Let m ∈ N, 1 ≤ m ≤ n be a such an integer that wr,m > 0. We define

Ne(~wr) ·m Ne(~ws) = Ne(~wu),

where
~wu = (wu,1, . . . , wu,n) = (wu,1(t), . . . , wu,n(t)),

~wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T

and, of course, the neuronNe(~wu) is defined as the mapping yu(t) =
n∑

k=1

wk(t)xk(t)+bu, t ∈ T, bu =

brbs. Further for a pair Ne(~wr), Ne(~ws) of neurons from AN(T ) we put Ne(~wr) ≤m Ne(~ws), wr =
(wr,1(t), . . . , wr,n(t)), ws = (ws,1(t), . . . , ws,n(t)) ifwr,k(t) ≤ ws,k(t), k ∈ N, k 6= m and wr,m(t) =
ws,m(t), t ∈ T and with the same bias. Evidently (AN(T ), ≤m) is an ordered set. A relationship
(compatibility) of the binary operation "·m" and the ordering ≤m on AN(T ) is given by this assertion
analogical to the above one.

Lemma 3. The triad (AN(T ), ·m,≤m) (algebraic structure with an ordering) is a non-commutative
ordered group.

Sketch of the proof:

1. The operation "·m" is evedently asociative.

2. Let ~w(t) = (w1(t), . . . , wn(t)), where wk(t) = δkm for any t ∈ T. Then the neuron Ne(~w)

determined by y(t) =
n∑

k=1

wk(t)xk(t) + 1 is the neutral element of the semigroup (AN(T ), ·m),

i.e. the unit with respect to the binary operation "·m".

3. Inverse elements: Define

w̄k(t) = (wm(t))−1(wk(t) + 1)δkm − wk(t),

t ∈ T and any k = 1, 2, . . . , n. Then the inverse element to the neuron Ne(~w), with y(t) =
n∑

k=1

wk(t)xk(t) + b within the semigroup (AN(T ), ·m) is the neuron Ne( ~̄w), determined by

ȳ(t) =
n∑

k=1

w̄k(t)x̄k(t) + b−1.

4. Compatibility of the ordering relation≤m with the binary operation "·m" (the substitution prop-
erty):

Suppose Ne(~wr), Ne(~ws), Ne(~wu) ∈ AN(T ) are neurons such that Ne(~wr) ≤m Ne(~ws), i.e.
wr,m(t) ≡ ws,m(t), wr,k(t) ≤ ws,k(t) for any index k ∈ {1, 2, . . . , n},
k 6= m, t ∈ T. Denote Ne(~wa) = Ne(~wr) ·m Ne(~wu), Ne(~wb) = Ne(~ws) ·m Ne(~wu), where
~wa(t) = (wa,1(t), . . . , wa,n(t)), ~wb(t) = (wb,1(t), . . . , wb,n(t)), t ∈ T.
For any index k ∈ {1, 2, . . . , n} we have

wa,k(t) = wr,m(t)wu,k(t) + (1− δkm)wr,k(t),
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wb,k(t) = ws,m(t)wu,k(t) + (1− δkm)ws,k(t), t ∈ T,
Since wr,m(t) ≡ ws,m(t), wr,k(t) ≤ ws,k(t), k 6= m, t ∈ T, for k = m there holds:

wa,m(t) = wr,m(t)wu,k(t) = ws,m(t)wu,m(t), t ∈ T

and for k 6= m we have

wa,k(t) = wr,m(t)wu,k(t) + wr,k(t) ≤ ws,m(t)wu,k(t) + ws,k(t) = wb,k(t), t ∈ T,

thus
Ne(~wr) ·m Ne(~wu) ≤m Ne(~ws) ·m Ne(~wu).

Similarly we obtain that

Ne(~wu) ·m Ne(~wr) ≤m Ne(~wu) ·m Ne(~ws).

Denoting

AN1(T )m = {Ne(~w); ~w = (w1, . . . , wn), wk ∈ C(T ), k = 1, . . . , n, wm(t) ≡ 1},

we get the following assertion:

Proposition 1. Let T = 〈0, t0) ⊂ R, t0 ∈ R ∪ {∞}. Then for any positive integer n ∈ N, n ≥ 2 and
for any integer m such that 1 ≤ m ≤ n the semigroup (AN1(T )m, ·m) is an invariant subgroup of
the group(AN(T )m, ·m).

1. Suppose Ne(~wr), Ne(~ws) ∈ (AN1(T )m are arbitrary neurons. Then

~wr = (wr,1(t), . . . , wr,m(t), . . . , wr,n(t)),

~ws = (ws,1(t), . . . , ws,m(t), . . . , ws,n(t)),

where wr,m(t) ≡ 1, ws,m(t) ≡ 1. Evidently the formal neuron Ne(~w),
where ~w(t) = (w1(t), . . . , wn(t)) with wk(t) = δkm, t ∈ T, acting by

y(t) =
n∑

k=1

wk(t)xk(t) + 1,

which is, of course, neutral element of the group (AN(T )m, ·m) also belongs to AN1(T )m.
Denoting Ne(~wv) = Ne(~wr). Ne(ws), ~wv = (wv,1, . . . , wv,n) we have

wv,m(t) = wr,m(t)(ws,m(t))−1 = 1

for any t ∈ T, thus Ne(~wv) ∈ AN1(T )m, consequently we obtain that (AN1(T )m, ·m) is a
subgroup of the group (AN(T )m, ·m).

2. Now suppose Ne(~wr) ∈ AN(T )m, Ne(~ws) ∈ AN1(T )m, where ~wr(t), ~ws(t) are vectors of
function as above. Denoting

Ne(~wu) = Ne−1(~wr) ·m Ne(~ws) ·m Ne(~wr),

where ~wu(t) = ~w(t) = (wu,1(t), . . . , wu,n(t)), t ∈ T, then ~wu,m(t) = (~wr,m(t))−1 ·m ~ws,m(t)·m
~wr,m(t) = ~ws,m(t) = 1 for any t ∈ T, thus Ne(~wu ∈ AN1(T )m, which means that

Ne−1(~ws) ·m AN1(T )m ·m Ne(~ws) ⊂ AN1(T )m,

therefore the group (AN1(T )m, ·m) is an invariant subgroup of the group (AN(T )m, ·m).

239



If m, n ∈ N, 1 ≤ m ≤ n− 1, then a certain relationship between groups (ANr(T )m, ·m),
(LA(T )m+1, ◦m+1) is contained in the following proposition:

Proposition 2. Let t0 ∈ R, t0 > 0, T = 〈0, t0) ⊂ R and m, , n ∈ N are integers such that
1 ≤ m ≤ n − 1. Define a mapping F : ANn(T )m → LAn(T )m+1 by this rule: For an arbitrary
neuron Ne(~wr ∈ ANn(T )m, where ~wr = (wr,1(t), . . . , wr,n(t)) ∈ [C(T )]n we put F (Ne(~wr) ) =
L(wr,1, . . . , wr,n) ∈ LAn(T )m+1 with the action :

L(wr,1, . . . , wr,n)y(t) =
dny(t)

dtn
+

n∑
k=1

wr,k(t)
dk−1(t)

dtk−1
, y ∈ Cn(T ).

Then the mapping F : ANn(T )m → LAn(T )m+1 is a homomorphism of the group (ANn(T )m, ·m)

into the group (LAn(T )m+1, ◦m+1).

Consider Ne(~wr), Ne(~ws) ∈ ANn(T )m and denote F (Ne(~wr)) = L(wr,1, . . . , wr,n),
F (Ne(~ws = L(ws,1, . . . , ws,n). Denote Ne(~wu) = Ne(~wr) ·m Ne(~ws). There holds

F (Ne(~wr) ·m Ne(~ws)) = F (Ne(~wu)) = L(wu,1, . . . , wu,n),

where

L(wu,1, . . . , wu,n)y(t) = y(n)(t) +
n∑

k=1

wu,k(t)y(k−1)(t).

Here wu,k(t) = wr,m+1(t)ws,k(t) + wr,k(t), k 6= m, and wu,m+1(t) = wr,m+1(t)ws,m+1(t).
Then L(wu,1, . . . , wu,n) = L(wr,1, . . . , wr,n) ·m L(ws,1, . . . , ws,n) = F (Ne(~wr)) ·m F (Ne(~ws)).
The neutral element Ne(~w) ∈ ANn(T )m is also mapped onto the neutral element of the group
(LnA(T )m+1, ·m+1), thus the mapping F : (ANn(T )m, ·m) → (LnA(T )m+1, ◦m+1) is a group ho-
momorphism.

Now, using the construction described in the above Lemma we obtain the final transpozition hyper-
group (called also non-commutative join space). Denote by P(AN(T )m)∗ the power set of AN(T )m
consisting of all nonempty subsets of the last set and define a binary hyperoperation

∗m : AN(T )m × AN(T )m → P(AN(T )m)∗

by the rule
Ne(~wr) ∗m Ne(~ws) = {Ne(~wu); Ne(~wr) ·m Ne(~ws) ≤m Ne(~wu)}

for all pairs Ne(~wr), Ne(~ws) ∈ AN(T )m. More in detail if ~w(u) = (wu,1, . . . , wu,n), ~w(r) =
(wr,1, . . . , wr,n), ~w(s) = (ws,1, . . . , ws,n), thenwr,m(t)ws,m(t) = wu,m(t), wr,m(t)ws,k(t)+wr,k(t) ≤
wu,k(t), if k 6= m, t ∈ T. Then we have that (AN(T )m, ∗m) is a non-commutative hypergroup. The
above defined invariant (termed also normal) subgroup (AN1(T )m, ·m) of the group (AN(T )m, ·m)
is the carried set of a subhypergroup of the hypergroup (AN(T )m, ∗m) and it has certain significant
properties.

Using certain generalization of methods from [7] we obtain after investigation of constructed struc-
tures this result:

Let T = 〈0, t0) ⊂ R, t0 ∈ R ∪ {∞}. Then for any positive integer n ∈ N, n ≥ 2 and for any integer
m such that 1 ≤ m ≤ n the hypergroup (AN(T )m, ∗m),where

AN(T )m = {Ne(~wr); ~wr = (wr,1(t), . . . , wr,n(t)) ∈ [C(T )]n, wr,m(t) > 0, t ∈ T},

is a transposition hypergroup (i.e. a non-commutative join space) such that (AN(T )m, ∗m) is its
subhypergroup, which is
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- invertible (i.e. Ne(~wr)/Ne(~ws) ∩ AN1(T )m 6= ∅ implies Ne(~ws)/Ne(~wr) ∩ AN1(T )m 6= ∅
and Ne(~wr) Ne(~ws)∩AN1(T )m 6= ∅ implies Ne(~ws) Ne(~wr)∩AN1(T )m 6= ∅ for all pairs of
neurons Ne(~wr), Ne(~ws) ∈ AN1(T )m,

- closed (i.e. Ne(~wr)/Ne(~ws) ⊂ AN1(T )m, Ne(~wr) \ Ne(~ws) ⊂ AN1(T )m for all pairs
Ne(~wr), /,Ne(~ws) ∈ AN1(T )m,

- reflexive (i.e. Ne(~wr) AN1(T )m = AN1(T )m/Ne(~wr) for any neuron Ne(~wr) ∈ AN(T )m and

- normal (i.e.Ne(~wr) ∗ AN1(T )m = AN1(T )m ∗Ne(~wr) for any neuron Ne(~wr) ∈ AN(T )m.

Remark A certain generalization of the formal (artificial) neuron can be obtained from expression
of linear differential operator of the n-th order. Recall the expression of formal neuron with inner

potential y−in =
n∑

k=1

wk(t)xk(t), where ~x(t) = (x1(t), . . . , xn(t)) is the vector of inputs, ~w(t) =

(w1(t), . . . , wn(t)) is the vector of weights. Using the bias b of the considered neuron and the transfer

function σ we can expressed the output as y(t) = σ

(
n∑

k=1

wk(t)xk(t) + b

)
.

Now consider a tribal function u : J → R, where J ⊆ R is an open interval; input are derived from
the function u ∈ Cn(J) as it follows: Inputs x1(t) = u(t), x2 = du(t)

dt
, . . . , xn(t) = dn−1(t)

dtn−1 , n ∈ N.
Further the bias b = b0

dnu(t)
dtn

.As weights we use the continuous functionwk : J → R, k = 1, . . . , n−
1.

Then formula

y(t) = σ

(
n∑

k=1

wk(t)
dk−1u(t)

dtk−1
+ b0

dnu(t)

dtn

)
is a description of the action of the neuron Dn which will be called a formal(artificial) differential
neuron. This approach allows to use solution spaces of corresponding linear differential equations.

4 Conclusion
Neural nets and neural computation form wide topics with interesting history and with many appli-
cations in science and number of technical utilizations. In references there is presented a certain,
but very restricted choice of publications [2, 3, 12-14, 25-30]. The new chapter in the history of
neural computation is attributed with the names Rumelhart and McClelland, knowned as members
of PDP group, co-authors of algorithm backpropagation. Around the time neural networks were
widely recognized as leading directly forwards real artificial inteligence.Our considerations are based
on algebraic approach using classical structures in which are investigated in the present time. These
investigations allow further development.
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č. 3, pp. 147-168. ISSN: 1224 - 1784.

[21] NOVÁK, M.: Some basic properties of EL- hyperstructures. European Journal of Combina-
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