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Abstract. We study conformal mappings preserving the generalized Einstein tensor. We 
have derived corresponding partial differential equations and their integrability conditions. In 
addition to the generalized Einstein tensor we got other invariants of the mappings. Also we 
have proved that orientable compact manifolds equipped by positive definite metric, do not 
admit conformal mappings preserving the generalized Einstein tensor.
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1 Introduction
Diffeomorphisms preserving certain geometric objects are being given much attention of many re-
searchers in the differential geometry realm.

In particular, conformal mappings which preserved the Einstein tensor

Eij = Rij −
Rgij
n

studied in [1]. Preserving the stress-energy tensor

Sij = Rij −
Rgij

2

by conformal mappings was explored in [4], [2]. It’s worth for noting that in many classical issues e.
g. [7, p. 359], just the latter is referred to as the Einstein tensor. Let us refer to

Eij
def
= Rij − κRgij. (1)

as the generalized Einstein tensor. Here κ is a constant.
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2 Conformal mappings of Riemannian manifolds
Let (Mn, g) and (M

n
, g) be n-dimensional Riemannian manifolds with metric tensors gij and gij

respectively. Both metrics are defined in a common coordinate system (xi).

Definition The correspondence between (Mn, g) and (M
n
, g) is conformal, if the fundamental ten-

sors gij and gij of two manifolds Mn and M
n

are in the relation

gij(x) = e2ϕ(x)gij(x), (2)

where ϕ(x) is a function of the x’s.

Connections Γkij and Γ
k

ij compatible with the metrics gij and gij respectively must satisfy the equations

Γ
k

ij = Γkij + δki ϕj + δkjϕi − ϕkgij, (3)

where ϕi = ∂ϕ
∂xi

. Also we have the equations [3], [6]

R
h

ijk = Rh
ijk + δhkϕij − δhj ϕik + ghl(ϕlkgij − ϕljgik) + (δhkgij − δhj gik)∆1ϕ, (4)

Rij = Rij + (n− 2)ϕij + (∆2ϕ+ (n− 2)∆1ϕ)gij, (5)

R = e−2ϕ(R + 2(n− 1)∆2ϕ+ (n− 1)(n− 2)∆1ϕ). (6)

Here ϕi = ∂iϕ, ∆1ϕ = ϕiϕjg
ij , ϕij = ∇jϕi − ϕiϕj . Also Rh

ijk and R
h

ijk are the Riemann tensors
of the manifolds Mn and M

n
correspondingly. We denote as Rij = Rα

ijα and Rij = R
α

ijα their Ricci
tensors. Finally, R = Rijg

ij and R = Rijg
ij are their scalar curvatures.

3 Conformal mappings preserving generalized Einstein tensor
It follows from (5) and (6) that the function ϕ must satisfy the system [3, p. 114]

∇jϕi = ϕiϕj −
1

2
gij∆1ϕ+

1

n− 2

(
Rij −

Rgij
2(n− 1)

)

− 1

n− 2

(
Rij −

Rgij
2(n− 1)

)
.

(7)

It follows from (1) that the deformation of the generalized Einstein tensor can be written as

Eij − Eij = Rij − κRgij −Rij + κRgij. (8)

Taking account of the preservation requirement, i. e. Eij = Eij , from (8) we get

Rij −Rij = κRgij − κRgij. (9)

Since (9) holds we can rewrite (7) as

∇jϕi = ϕiϕj −
1

2
gij∆1ϕ+ λRgij − λRgij, (10)
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where λ = 2κ(n−1)−1
2(n−1)(n−2)

. Differentiating (10) covariantly with respect to xk and the connection Γ of
the manifold (Mn, g) we get

∇k∇jϕi =∇kϕiϕj + ϕi∇kϕj − ϕmgml∇kϕlgij + λ∂kRgij + 2λϕkRgij − λ∂kRgij =

=

(
ϕiϕk −

1

2
gik∆1ϕ+ λRgik − λRgik

)
ϕj + ϕi∇kϕj−

− ϕmgml
(
ϕlϕk −

1

2
glk∆1ϕ+ λRglk − λRglk

)
gij+

+ λ∂kRgij + 2λϕkRgij − λ∂kRgij = ϕiϕkϕj −
1

2
gik∆1ϕϕj+

+ λϕjRgik − λϕjRgik + ϕi∇kϕj −
1

2
gij∆1ϕϕk + λϕkRgij+

+ λϕkRgij + λ∂kRgij − λ∂kRgij

(11)

Alternating (11) in j and k and using the Ricci identity, we obtain

ϕαR
α
ijk = 2λ(

1

2
∂kRgij −

1

2
∂jRgik −

1

2
∂kRgij +

1

2
∂jRgik +R(ϕkgij − ϕjgik)). (12)

The condition (12) can be rewritten as

ϕαR
α
ijk − 2ϕαλR(δαk gij − δαj gik) = λ(∂kRgij − ∂jRgik − ∂kRgij + ∂jRgik),

or
ϕαZ

α
ijk = λ(∂kRgij − ∂jRgik − ∂kRgij + ∂jRgik), (13)

where

Zh
ijk

def
= Rh

ijk −
2κ(n− 1)− 1

(n− 1)(n− 2)
R(δhkgij − δhj gik). (14)

We can express ϕij using (10)

ϕij = −1

2
gij∆1ϕ+ λRgij − λRgij.

If the expressions for ϕij are substituted in (4), we find that

Z
h

ijk = Zh
ijk,

where Zh
ijk is defined in (14). Hence we obtain

Lemma If manifolds (Mn, g) and (M
n
, g), (n > 3) are in the conformal correspondence and the

mapping preserves the tensor Eij = Rij − κRgij , (κ = const), then the condition

ϕαZ
α
ijk =

2κ(n− 1)− 1

2(n− 1)(n− 2)
(∂kRgij − ∂jRgik − ∂kRgij + ∂jRgik)

holds. Also, the tensor

Zh
ijk = Rh

ijk −
2κ(n− 1)− 1

(n− 1)(n− 2)
R(δhkgij − δhj gik)
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is also preserved by the mapping.

Now we prove that for preserving of the generalized Einstein tensor more strong conditions must be
satisfied. Let us contract the tensor Zh

ijk for h and k.

Zα
ijα = Rα

ijα −
2κ(n− 1)− 1

(n− 1)(n− 2)
R(δααgij − δαj giα) = Rij −

2κ(n− 1)− 1

(n− 2)
Rgij.

Obviously, the tensor Zα
ijα = Rij − 2κ(n−1)−1

(n−2)
Rgij formed by contraction also must be preserved by

the mappings. Hence we obtain that if κ 6= 1
n

the product Rgij also must be preserved, as a linear
combination (constant coefficients) of the preserved tensors.

Eij − Zα
ijα = Rij − κRgij −Rij +

2κ(n− 1)− 1

(n− 2)
Rgij =

1− κn
n− 2

Rgij.

Similarly, it can be shown that the conformal mapping also must preserve the Ricci tensor Rij . Hence
the system (7) can be written in the form

∇jϕi = ϕiϕj −
1

2
gij∆1ϕ. (15)

Let us differentiate (15) covariantly with respect to xk and the connection Γ of the manifold (Mn, g).
We get

∇k∇jϕi =∇kϕiϕj + ϕi∇kϕj − ϕmgml∇kϕlgij =

=

(
ϕiϕk −

1

2
gik∆1ϕ

)
ϕj + ϕi∇kϕj − ϕmgml

(
ϕlϕk −

1

2
glk∆1ϕ

)
gij =

=ϕiϕkϕj −
1

2
gik∆1ϕϕj + ϕi∇kϕj −

1

2
gij∆1ϕϕk.

(16)

Alternating (16) in j and k and using the Ricci identity, we obtain

ϕαR
α
ijk = 0. (17)

We can express ϕij using (15)

ϕij = ∇jϕi − ϕiϕj = −1

2
gij∆1ϕ,

and substitute in (4). Collecting the terms we have

R
h

ijk = Rh
ijk,

hence

Theorem 3.1 If manifolds (Mn, g) and (M
n
, g), (n > 3) are in the conformal correspondence and

the mapping preserves the tensor Eij = Rij − κRgij , and κ 6= 1
n

, then the function ϕ generating the
mapping, must satisfy the system of PDE’s

∇jϕi = ϕiϕj −
1

2
gij∆1ϕ,
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whose conditions of integrability are
ϕαR

α
ijk = 0.

Also, the Riemann tensor Rh
ijk, the Ricci tensor Rij , and the product Rgij are preserved by the map-

ping.

It’s worth for noting that some of presented results have been obtained in [4], in particular, the equa-
tions (15) and (17).

Let us differentiate (10) covariantly with respect to xk

ϕα,lR
α
ijk + ϕαR

α
ijk,l = 0.

Because of (15) and (17) it follows

−1

2
∆1ϕRlijk + ϕαR

α
ijk,l = 0. (18)

If an explored manifold (Mn, g) is locally symmetric, then

Rh
ijk,l = 0.

Hence it follows from (18) that
1

2
∆1ϕRlijk = 0. (19)

If a manifold (Mn, g) is recurrent, i. e. the covariant derivative of the Riemann tensor respect to xl

satisfies
Rh
ijk,l = ρlR

h
ijk,

then because of (17), it follows from (18) that (19) holds.

Now, transvecting (17) and (18) with gij we get for Einstein maniflds

1

2
∆1ϕRlk = 0. (20)

Thus, following (19) and (20), we have

Theorem 3.2 Recurrent(in particular, symmetric) manifolds (Mn, g) (n > 3), equipped by positive
definite metric with the Riemann tensor which is not equal to zero, do not admit conformal mappings
preserving the generalized Einstein tensor Eij = Rij − κRgij , (κ 6= 1

n
). Also, Einstein manifolds

equipped by positive definite metric, do not admit conformal mappings preserving the generalized
Einstein tensor if they are not Ricci flat.

Also for compact manifolds we have

Theorem 3.3 Orientable compact manifolds (Mn, g) (n > 2) equipped by positive definite metric,
do not admit conformal mappings preserving the generalized Einstein tensor Eij = Rij − κRgij ,
(κ 6= 1

n
).

proof. Let a compact orientable manifold (Mn, g) (n > 2) admits conformal mappings preserving
the generalized Einstein tensor Eij = Rij − κRgij , (κ 6= 1

n
). Then, the generating function ϕ must

satisfy the equations (15):

∇jϕi = ϕiϕj −
1

2
gij∆1ϕ.
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Transvecting this with gij , we find

∇iϕ
i = −n− 2

2
∆1ϕ.

On the other hand, according to the Theorem of Green [9, p. 21]∫
Mn

∇iϕ
idτ = 0,

where dτ is the volume element

dτ =
√
gdξ1 ∧ dξ2 ∧ ... ∧ dξn.

In this case we obtain
n− 2

2

∫
Mn

∆1ϕdτ = 0,

that is impossible for nontrivial conformal mappings of a manifold equipped by positive definite
metric g. The theorem is proved.

4 Local structure of Riemann manifolds admitting conformal mapping preserving the gener-
alized Einstein tensor

Let us multiply the both sides of (15) by −e−ϕ [5]. We get

−e−ϕ
(
∇jϕi − ϕiϕj

)
= e−ϕ

1

2
gij∆1ϕ.

Then, putting u = e−ϕ from (15) we obtain

∇jui =
∆1u

2u
gij. (21)

Differentiating the multiplier ∆1u
2u

we see that because of (21) any partial derivative of the multiplier
is equal identically to zero

∂

∂xi
(∆1u

2u

)
= 0.

Thus, if a manifold admits nontrivial conformal mappings which preserve the generalized Einstein
tensor Eij = Rij − κRgij , (κ 6= 1

n
), then there exists a function u, that

∇jui = cgij, c = const. (22)

Suppose conversely that on a certain manifold (Mn, g) there exists a function satisfying (22). Multi-
plying the both sides of (22) by the vector ui, we get

ui∇jui = cuj,

or
1

2

∂

∂xi
(
∆1u

)
= c

∂u

∂xi
.

It’s obvious that
1

2
∆1u = cu+ c2,
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where c2 is an arbitrary constant. We can express c using the equation and substitute the expression
in (22)

∇jui =
∆1u

2
(
u+ c2

c

)gij. (23)

Since the constant c2 is arbitrary, we can replace u + c2
c

in (23) by ũ, satisfying the condition ũ > 0.
Thus,

∇jũi =
∆1ũ

2ũ
gij. (24)

Supposing that ũ = e−ϕ, we derive that (15) holds. We suppose that c > 0, since the scalar field u
can always be determined so that the conditions c > 0 and u > 0 hold. For example we can replace
u −→ u + C, or u −→ −u + C, where C is a positive new constant. Obviously, the conditions of
integrability of (22) are

utR
t
ijk = 0.

Thus we have

Theorem 4.1 In order that a manifold (Mn, g) admit conformal mappings preserving the generalized
Einstein tensor Eij = Rij −κRgij , (κ 6= 1

n
) it is necessary and sufficient that there exist a scalar field

u such that
∇j∇iu = cgij, c = const 6= 0.

The problem of existence of such field was explored by P. A. Shirokov [8, p. 287]. Taking account of
the Shirokov’s results and using the theorem 4.1 , we have obtain

Theorem 4.2 In order that a manifold (Mn, g) which is not Eclidean, admit conformal mappings
preserving the generalized Einstein tensor Eij = Rij − κRgij , (κ 6= 1

n
) it is necessary and sufficient

that (Mn, g) must be irreducible and the metric g has the form

ds2 = (dx1)2 + (x1)2htsdx
tdxs, t, s = 2, n, (25)

where coefficients hts do not depend on x1. In that case only solution of the system (15) is the function
generating the mapping

ϕ = ln
1

C1(x1)2 + C2

, (26)

where C1 and C2 are positive arbitrary constants.

If the metric g has the form (25), then the metric is said to define an Euclidean family of concentric
spheres. As an example [8, p. 291] we can consider 3-dimensional space which contains such family.
The metric g has the form

ds2 = (dx1)2 + (x1)2
(
g22(dx2)2 + g33(dx3)2

)
,

and the function generating the conformal mapping preserving the generalized Einstein tensor is
defined by the equation (26).
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