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1  Introduction 

It is necessary in hydrology to use methods of mathematical statistics and numerical 

mathematics. They can effectively help even if data does not strictly satisfy all conditions, 

which are necessary for using such methods. One problem being solved using such 

mathematical methods is fitting theoretical curves with cumulative frequency curves from 

measured data. 

Cumulative frequency function is an inverse function to the survival function. 

By fitting theoretical curve one can obtain several estimated parameters for a given profile. It 

is then possible to easily analyze data and deduce values that cannot be directly measured – 

extrapolate beyond measured data (occurrence of rare phenomena such as floods). Deduced 

values can be used for deriving cumulative frequency curves in unobserved profiles using 

geographical and physical conditions in profiles (for example using regression equations for 

parameters of distribution).  

2.1 Theoretical frequency curves and methods of parameters optimization on 
theoretical frequency curves of discharges 

It is now necessary to describe the transformation of normal distribution into the so-called 

LN5 distribution. It is a generalized LN3 transform. LN5 distribution is a logarithmic-

exponential transformation of normal distribution. In LN5 transformation is in contrast to 
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LN3 transformation used similarity of curves using parameter a. This transformation is given 

by the formula 
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 , where a, b and y0 are parameters, σ is variance of 

the normal distribution, μ is mean shift of this distribution and X is standardized normal 

distribution [1], [2]. If one sets the parameters a and b to be equal to 1, then one obtains the 

LN3 distribution. 

Various different metrics that optimize quality of fit are used for fitting theoretical curves. 

The quality of the different metrics can be compared with the help of simulations or their 

application using large data sets. In this way one can assess the quality of results using 

different metrics. 

The only metric used in hydrology is the least square method derived for symmetrical 

distribution or weighted least square metrics used for LN2, LN3 or Pearson distribution. In 

climatology, it is used for other distributions, e. g. the Weibull distribution. 

There is one problem with the weighted least square method. When values close to zero are 

used, one divides differences between measured values and theoretical values by value close 

to zero and then the smallest values (though they have usually lower accuracy) have greater 

weight than the other values. In an ideal case, the weight given to the highest and smallest 

values would decrease slightly. All the known metrics try to optimize the sum (usually to 

minimum) of metric using some relation difference between values of theoretical curve and 

measured one in the same probabilities for being equal or exceeding their values. This method 

is used for optimization of any function with measured values that characterize it. 

An experiment has been done for creating a method not based on minimization of some 

function of differences between measured and theoretical data but which uses minimization of 

sum of differences between probability of measured frequency and the same theoretical value. 

Such a method could work generally with different frequency curves.  It could be universally 

applied and allow deriving theoretical function quality. Such method could be usable even for 

survival functions because it is nearly the same. It would be possible to obtain more 

parameters of theoretical distribution, which could subsequently be analysed further. 

When using method of probability optimization one does not minimize expression  

∑ |𝐹(𝑝𝑖) − 𝑦𝑖|
𝑑

𝑖 , where F(pi) is a theoretical frequency curve, pi is a probability for being 

equal or exceeding their values, yi are aligned to measured values and d is an exponent 

(usually second power).In case of even numbers one does not need absolute value. 

Using the method of probability optimization the parameters of frequency curve by heuristic 

iteration process can be obtained. It is necessary to choose convenient starting parameters that 

largely depend on user’s experience. 

Description of probability optimization method: suppose we have r ≥ 1 groups of the same 

values yi in a sample of n measured values. They have different empiric probabilities for being 

equal or exceeding their values. Such situation is caused mostly by inaccuracy of 

measurements. In an ideal case same values occur with zero probability. In i group we have ni

equal values yi. Their empirical probabilities for being equal or exceeding probability values 

are
iini pp ,,1  . Theoretical probability for equal or exceeding value yi is marked pi. Then F(pi) 

= yi. We choose convenient starting parameters for LN5 distribution and by iteration process 
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find parameter estimation of such distribution so that the expression 
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minimal. 

We have a lot of experience with working with hydrological data and we know that it is 

necessary to norm such data to average of 1. This is necessary to do if one wants to compare 

parameters of different curves. This is necessary to do in order to have the possibility to 

obtain relationships of the physical-geographical conditions of catchments. The value of 

normed average 1 follows from transforming of average of normal distribution, which is 0. 

After an exponential transformation it is e
0
 =1.

2.2  Characteristics of probability optimization method 

Above described method of parameters estimation seems to possess several interesting 

characteristics, but they are not accurately mathematically proven. 

a) When using simulated data it was shown that the parameters estimation is very close

to the real parameters of distribution regardless of symmetry or asymmetry of

distribution.

b) The results seem to better match the course of densities similarly to the method of

maximal likelyhood. However, the probability optimization method is known to work

even with additive and multiplicative coefficients in expressions of distribution (it is

important even in LN3 and especially LN5 distribution).

c) Method of maximal reliability has tendencies to fail under parameter estimation for

data sets where groups of same values exist. Probability optimization method solves

this problem very well.

d) Except for one case, in all so far tested discharge data sets (about 100 data sets) the

estimation of parameters was independent of the size of d power of the difference

between theoretical and empirical frequency probabilities in the range of 0.1 to 4.

When using the commonly used methods for estimation based on differences between

measured and theoretical values it depends on power used.

e) A simulation experiment was performed using nine different parameters. Then relative

differences between simulated and theoretical values of extremely high and low values

were compared. The data range in each simulation of LN5 distribution was 824 values.

Frequency probability for extremely high values was chosen to be 1.214x10
-7

 and for

extremely low values 1 - 1.214x10
-7

. Parameter estimations of the frequency curve

were obtained by both the method of optimization of probability and the weighted

least square method. Results are shown in Table 1.

Method Average relative difference 

for extremely low 

discharges 

Average relative difference 

for extremely high 

discharges 

Optimization probability 0.253550 0.149132 

Weighted least square 0.295576 0.172721 

Tab. 1. Average relative differences - simulated and theoretical values. 
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As can be seen, the method of probability optimization provides better results in both 

cases. 

f) Further analyzed were removed 10 % and then 20 % values at both tails and their

effects. Frequency probabilities of the other values were retained. Data represented

flows on the river Balinka in Baliny in the years 1997-2016. Estimations made by the

relative least square method and method of probability optimization was depicted in

Tab. 3. First row of the table gives estimations for all values, in the 2
nd

 row 10 %

values are omitted at the start and end of frequency curve, in the 3
rd

 row 20 % is

omitted as well. Last column gives extrapolated value of frequency probability

2.7397x10
-5

. Course of frequency curves is shown on Fig. 2 and 4.

Probability optimization method 

Est. a Est. b Est. μ Est. σ Est. y0 Extrapolation [m
3
.s

-1
]

All data   2.1952 0.9123 -1.2300 1.0003 -0.0541 20,78 

20 % omitted 2.0364 0.9606 -1.2337 1.0334 0.0012 23.79 

40 % omitted 2.0475 0.9968 -1.2737 1.0410 0.0260 25.76 

Weighted least square method 

Est. a Est. b Est. μ Est. σ Est. y0 Extrapolation [m
3
.s

-1
] 

All data 11.7674 1.1309 -2.5912 0.8008 -0.0135 15.81 

20 % omitted 14.4738 0.6889 -5.1105 2.1082 -0.0667 100.25 

40 % omitted 14.2035 0.6825 -5.1623 2.2018 -0.0592 111.63 

Est. = estimation. 

Tab. 2. Parameters LN5 distribution estimations obtained by two methods under releasing of 

values on the tails. 

Using the table one can see that at this point on the river the least square method gives the 

least stable estimates for the parameters of theoretical frequency curve compared to the 

relative least square method. Same goes for the extrapolated values. 

Similar tests were done for the other six profiles – with one exception the relative least square 

method has always been the least stable one. 

Fig. 1. Fitting theoretical distribution LN5 on daily discharges of river Balinka in Baliny 

between 1997-2016, probability optimization method. 
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Fig. 2. Example of fit when omitting 20 % data at the tails, weighted least square method/ 

Fig. 3. Example of fit when omitting 20 % data at the tails, probability optimization method. 

2.3  Fitting cumulative frequency curve for daily precipitation 

To pass fit theoretical cumulative frequency curve through daily precipitation is relatively 

easy. Using the described methods the fit can be made including dry days. Days with 

precipitation are fitted by part of LN5 where values of transformed normal distribution are 

greater than zero. Negative values, which after transformation give very negligible values 

near zero, represent dry part of the curve. LN5 distribution seems to be two - parametric 

distribution for precipitation. Only parameters a and μ vary. The other three seem to be, at 

least for the region of Czech Republic, constant. 

Using all five parameters gives insignificantly better result, but the question is whether the 

difference is only result of errors in measurements. 

The values of “constant” parameters are b = 0.18708, σ = 277769.0352, y0 = 0. 

Fig. 4 shows the cumulative frequency curve of the daily precipitation at Babice nad Svitavou 

station between 1997 – 2016. Data are in logarithmic scale. Parameter estimation a = 

0.00008899 and μ = -81874.33072 were obtained by the probability optimization method. 
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Fig. 4. Example of theoretical frequency curve of daily sum of precipitations. 

2.4  Fitting cumulative frequency curve for air humidity 

In order to fit air humidity data in % it was necessary to perform easy data adjustment. 

When calculating ratio between saturation deficit in % and air humidity in %, the resulting 

ratio lies between 0 and ∞. It is then possible to estimate parameters of LN5 distribution and 

then divide values on theoretical frequency curve by saturation deficit and obtain theoretical 

frequency curve for air humidity data. Resulting theoretical curve can only have values 

between 0 % and 100 %. An example of such curve is depicted on Fig. 5. Data comes from 

the station in Pec pod Sněžkou. Parameters estimation for ratio between saturation deficit and 

air humidity are: a = 0.001376, b = 3.0635,   μ = 6.7442, σ =2.60119, y0 = 0.01505. 

Fig. 5. Course of air humidity theoretical frequency curve. 

2.5  Fitting theoretical frequency curve for daily air temperatures 

Air temperatures measured in °C are usually fitted by normal distribution though they are a 

little asymmetric. They have extended end towards the lower values. It is possible to make 

them symmetrical using the Stephan – Boltzmann law: warm energy emitted from an 

absolutely black body with absolute temperature T1 to the space with temperature T2 is 
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proportional to the difference of fourth powers of absolute temperatures of the body and the 

space (in Kelvin). For easier work with data the result, it is convenient to divide it by  

100 000 000. Frequency curve of such data is symmetric (Fig. 6). The particular values are 

from station in the city Jihlava. If it was to be fitted with a similar quality as described above 

it is necessary to use power transformation of normal distribution with the power marked as b 

(it is assumed that b ≠ 1). 

     111 0  yXaXsignY
b

  for X ≥ 0 

     111 0  yXaXsignY
b

  for X< 0 

Subtraction or addition of 1 ensures that positive and negative part of theoretical frequency 

curve will be continuous. After parameter estimation of transformed data it is possible to 

make reverse transformation from values proportional to the emitted energy – Fig. 6 to the 

temperature in °C – Fig. 7. It turned out that similarly to daily precipitation it is not necessary 

to use all parameters but apparently at least in the Czech Rep., only one parameter is 

necessary, and it is the parameter a. Using all five parameters has the same consequences as 

precipitation. 

Values of “constant” parameters are approximately b = 0.33967, μ = 0, σ = 0.0001, y0 = 1. 

Fig. 6. Theoretical curve of exceeding values relative to emitted energy a = 10.45342. 

Fig. 7. Theoretical curve of exceeding temperature in °C. 
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3  Conclusion

It can be said that theoretical frequency curves LN5 and power transformation of the normal

distribution are more accurate than the theoretical frequency curves currently used in

hydrology and climatology. If probability optimization method is used, estimations of

parameters are fairly stable against omitting data at the tails of theoretical frequency curve

from optimization process. Their role in theoretical frequency curves must be preserved. This

also means that probabilities of the measured values of the frequency curves must be

preserved as well. Further advantage is that potential extrapolations of the theoretical

frequency curve do not reach nonsense values even when using probabilities in the order of

the age of the Earth. This is a consequence of the parameter b being < 1. If this way

extrapolated data are accurate remains unknown. In addition, the Earth’s climate is constantly

changing. Above stated conclusion would only be correct if current climate was the same in

the past 5.109 years. In the meantime, it is possible to say that these results have physical

basis. Except for air temperatures where this is clearly given by type of transformation of

input data (physical basis of the modification of the standard normal distribution remains

questionable), this is not completely clear. More questions remains than there are answers.
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