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Abstract. The superformula of nature, introduced by Dutch botanist Johan Gielis to 
describe a wide range of shapes ([3]), is examined from the educational point of view. 
According to our experience, it reveals an optimal chance to propose important 
knowledge also in university courses of "weak" mathematics.  Students become 
acquainted with graphic representation of functions , polar coordinates and the concept 
of mathematical model; moreover, they train themselves for a conscious use of 
parameters.   It also offers the opportunity of a critical use of technology. 

Keywords:  elementary mathematical models, teaching innovation 

Mathematics Subject Classification:  Primary 97D40; Secondary 97U50, 97U70 

1 Introduction 

For centuries, scientists have been trying to express the forms of nature in mathematical 
terms;  the description of the forms is one of the major problems of biology, especially when 
dealing with complicated shapes such as leaves or shells.  
In 2003 the Dutch botanist Johan Gielis proposed a formula that can describe a wide range of 
natural shapes ([3]).  Gielis' superformula represents a tool for analysis and comparison, 
moreover it can be used in reconstruction and recognition programs. 
Despite its aspect 
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the equation reveals rather simple: it is a modified version of the equation for a circle, 
depending of seven parameters.   
Changing one of the parameters the proportions of the shapes change, going from a perfect 
circle to an ellipse.  By changing another one, you change the axes of symmetry, going from a 
circle to a triangle, a square, a pentagon, and so on.  By changing both the proportions and the 
symmetry, shapes are produced with any number of smooth or irregular sides.  
You can also produce non-biological forms, such as snowflakes or crystals. 
Of course also a three-dimensional version of the formula hold, with many interesting 
applications. 
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In our contribution we wish to focalize a different aspect: the potentiality of the formula for 
educational purposes.    Students, fascinated by the wonderful shapes, let themselves be led 
into the mathematical world where they acquire a wide range of knowledge without difficulty  
and become aware of the important unifying properties of the discipline. 
For didactical purpose we have chosen to present superformula step by step as subsequent 
changes to the equation of a circumference.   In this way, introducing one parameter at a time, 
we have the opportunity to show clearly the role played by  each parameter.  
More precisely the paper is organized as follows.  

Section 2. From circumference to super-circumferences (parameter p ). 

Section 3. From  super-circumferences to super-ellipses (parameters a  and b ). 

Section 4. From Cartesian to polar coordinates (parameters r  and  ). 

Section 5. Three different exponential parameters 1 2 3p p p  take the place of p . 

Section 6. The argument   is revised as phase parameter 
4
m
 .   

Section 8. Scale parameter r  is replaced by a function  R  .  
 

Sections 7 and 9  are devoted to applications of superformula to natural shapes.  See also 
Section 3.3, 8.1 and 8.2 for other examples. 
 

The graphics in the present paper were implemented by the Authors with Mathematica ver.7. 
  
 
2 The squared circle 
 
For a long time the circle and the square have been considered as "opposed" figures, basic 
models with completely different peculiarities.   At the beginning of the nineteenth century 
French mathematician Gabriel Lamé (Tours 1795 – Paris 1870) revolutionized this view by 
proving that circles and squares could be represented by a single equation. 
As it is well known, the equation of the circumference with center in the origin  and radius  r    
is the following 

(1)                                                    2 2 2x y r    
         

Lamé introduced the following generalization of the circumference equation 
 

(1')                                    | | | |p p px y r        with      p 0  
 

which today is known as Lamé circumference.    The introduction of parameter p  allows to 
extend widely the shapes that can be represented by the equation, as we will show in the next 
section. 
 
2.1  The role of parameter p  
 

Of course, for 2p   we get usual circumference equation, but as the parameter p R  varies,  
other interesting figures are described, as the following images show 
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Lamé  super circumferences  

    
 

Fig. 1. p 0.2  Fig. 2. p 0.4  Fig. 3. p 0.6  Fig. 4. p 0.8  

   
 

 
Fig. 5. p 1  Fig. 6. p 1.2  Fig. 7. p 1.6  Fig. 8. p 2  

  
 

  
Fig. 9. p 2.4  Fig. 10. p 3  Fig. 11. p 6  Fig. 12. p 10  

 
 

For very small values of the parameter   ( 0p  )  pC   is constituted by two orthogonal 
segments of length  2  which intersect in the origin; as the values of p  increases, we get 
"asteroid" figures which gradually evolve first to the rhombus  1C ,  then to the circumference  

2C  and finally, for great values of the parameter  pC  they are getting closer to the square with 

the sides parallel to the axes  21,1 . 
 
3  Super-ellipses 
 
Ellipse can be considered as a generalization of the circumference 
 

(2)                                                   2 2 1x a y b      
 

where   0a    and  0b    are the length of the axes.    If a b  it reduces to a circumference. 
Thus Lamé proposed also the equations of super-ellipses 
 

(2')                                            1 0p pbx a y p    
 

which depends on three parameters , ,a b p .    
The contribution of each parameter can be easily deduced from the previous remark. 
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3.1   Super-ellipses in the real world 
For more than one century,  Lamé equation did not appear to be of great interest until it was 
re-discovered by Dutch architect Piet Hein and has founded a major role in architecture and 
design.   We wish to recall just a meaningful example. 
 

In 1959, the city of Stockholm was facing a building design problem whose brilliant solution 
would have provided an innovative idea from which many designers have drawn inspiration.   
In Sergel's Torg two large north-south and east-west traffic arteries intersected, creating a vast 
rectangular space (about 200 yards long) that was intended for commercial use.   The 
designers faced a problem that was more difficult than expected: the shape of the building. 
A rectangular construction would optimize the available space for the shopping but the 
corners would interfere with the surrounding traffic fluidity.  An ellipsoidal design would 
have sacrificed space for business, it would not be harmonized with the rectangular surface of 
the available space and would not have solved the traffic difficulties of cars satisfactorily. 
Hein choose a shape that could satisfied all the requests: the super-ellipse  with / 6 / 5a b   
and    5 / 2p   (see Fig. 13 and 14). 
 

 

 
 

/ 6 / 5a b   
5 / 2p   

  

Fig. 13.  Map of Stockholm. Fig. 14. super-ellipse. Fig. 15. Sergel's Torg. 
 

After the brilliant solution proposed by Hein, super-ellipses often met the favor of designers 
and  architects in Canada, France, Japan, the United States and Mexico.   
Piet Hein's collaboration with Bruno Mathsson, a famous Swedish designer, produced several 
super-elliptical artifacts: glasses, plates, desk lamps (very popular in the sixties), chairs and 
beds. (see http://www.piethein.dk/) 
 

An interesting link between super-ellipses and nature are the sections of bamboo plants.   
Some species of bamboo cane have square sections at the bottom (Chimono bambusa 
quadrangularis), more precisely the sections have the form of super-circumferences.  These 
square bamboos are more resistant than circular ones and are widely used for buildings in the 
east countries. 

Fig. 16 Chimono bambusa quadrangularis [2] .
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4 The first step toward super-formula 
 
In 2003 ([2],[3]) Dutch biologist Johan Gielis gave new life to Lamé equation by introducing 
some modifications that produced a very ductile formula.  As we will show in the following, 
Gielis equation is able to generate a multiplicity of forms of plants and living beings. 
 
4.1  From Cartesian to Polar coordinates.    
 

If we pass to polar coordinates  
cos
sin

x
y
  
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


   super-ellipses equation becomes 
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This formula adds two more parameters to super ellipses.   Let us show the contribution of 
each parameter  on the shape of the corresponding figure. 
 
4.2   The role of parameter r  
 

Of course  r   is a scale parameters that controls figure dimension. The following image 
shows a family of super-ellipses  corresponding to different values of the parameter r  (from 1 
to 5).   

 
Fig. 17.  Super-ellipses.   

 
4.3   The role of parameter    
 

We can consider the particular case  1a b r      
Observe that  function   ( ) 0,2        represent the length of the vector ray 
corresponding to angle   .    
For this reason, the local minima and maxima of   play a fundamental for the figure shape.    
Since  that function     is the reciprocal of function 

(3')                                
1

( ) cos sin 0,2p p p
pf       . 

 

the local maximum and minimum points of    correspond to the local minimum and 
maximum points of f ; in fact we have 
 

       0 0 0 0( ) ( )p pI f f I             . 
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4.4   Again on the role of parameter p 

As the parameter p  varies,   
1

( ) cos sinp p p
p


      assume different shapes, 

corresponding to the different values of the  maxima e minima of function  

   
1

( ) cos sin 0,2p p p
pf       . 

 

For  1p   (Manhattan metric) it can easily proved that function  
   

 1( ) cos sin 0,2f        
 

admits  
1min 1f            1max 2f   

 
 

and presents:  4 minimum points 
2j j


  ;    4 maximum points      0,1, 2, 32 1
4j jj 


   . 
 

The following images shows as the shape of 1f  is transmitted to that of 1  . 
   

 
 

Fig. 18.   Function  1f    1max 2f  . Fig. 18'. Function  1 . 
 
It is easy to prove that functions ( )pf   still admits 4 minimum points and 4 maximum points 
for every value of parameter p  .    
For 0 2p   they are the same of 1f ,  while for 2p   they are inverted 

minimum points:  2 1
4j j


      maximum points    0,1, 2, 3
2j jj 


  . 

Let us summarize the results in the following table. 
 
 

parameter min pf  max pf   

0 1p   1 
It progressively decreases as 
p   increases 

 

1p   1 2    (Manhattan metric) 

1 2p   1 
It progressively decreases as 
p   increases 

 

2p   1 1     (constant function)   (Euclidean metric) 

2p   It progressively decreases 
as p   increases 1 

 

       
 The following  images illustrate the results of the table. 
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The role of parameter p 

  
Fig. 19.    0.1p   max 22.62 min 1f f    Fig. 19'. 

  
Fig. 20.    0.5p   max 2.82 min 1f f   Fig. 20'.     

  
Fig. 21.    1.5p   max 1.12 min 1f f   Fig. 21'.     

  
Fig. 22.    2p   max min 1f f   Fig. 22'.     

  
Fig. 23.    2.5p   max 1 min 0.93f f   Fig. 23'.     
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Fig. 24.    4p   max 1 min 0.84f f   Fig. 24'. 

  
Fig. 25.    10p   max 1 min 0.75f f   Fig. 25'. 

 
 
5 A second first step toward super-formula 
 
A further extension of super-ellipses equation proposed by Gielis consists on adopting three 
different values for the exponents   1, 2, 3i ip   

(4)                                          
2 3 1
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Let us show the strategic power of this innovation. 
 
 

5.1   The role of parameters 1 2 3, ,p p p    
 

We can consider again the particular case  1a b r   . 
First of all, note that parameter  2p   acts on the horizontal component, while parameter  3p  on 
the vertical component. 
More precisely, each parameter produces the effect of a non-linear transformation, 
respectively 

2'
'

px x
y y

 



                 

3

'
' p

x x
y y


 
 

 

Let us assume 1 1p   and show the role of parameters   2p  and 3p   by means of some images. 
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The role of parameter p2  (p1=p3=1, m=4) 

 

   
Fig. 26. 2 0p   Fig. 27. 2 1p   Fig. 28. 2 2p   Fig. 29. 2 3p   

 

The role of parameter p3    (p1=p2=1, m=4) 
 
 

    
Fig. 30. 3 0p   Fig. 31. 3 1p   Fig. 32. 3 2p   Fig. 33. 3 3p   

 
Note that parameter  1p   produces an effect of multidirectional deformation. 
Let us see some examples, assuming 2 3 1p p  . 
 

The role of parameter p1    (p2=p3=1, m=4) 
 

 
   

Fig. 34. 1 0.01p   Fig. 35. 1 0.5p   Fig. 36. 1 2p   Fig. 37. 1 10p   
 
 
6 A third step: the introduction of phase parameter  
 
 

Gielis observes that all the figures above have the disadvantage of a limited symmetry, as it 
happen with super-ellipses.   Precisely they have a rotational symmetry of order four, while in 
nature there are organisms with hexagonal or pentagonal symmetry.    
For this reason he adds a phase parameter  k : 

(5)                                                    
2 3 1

1
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r k k
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
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To show the role of phase parameter, we can consider the particular case  1a b r     
1 2 3 1p p p    
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     1
( ) cos sink k k


      

 

Note that function  
 

(5')                                               ( ) cos sin 0,2kf k k       
 

admits the same maxima and minima of functions 1f  in Section 4.4 (see Fig. 18), but the 
number of maximum and minimum points is now 4k.  They are respectively   
 

minimum points: 0,1, , 4 1
2j j k

j
k

 


     

maximum points    0,1, , 4 1
2 1

4j j k
j
k

 
 

   . 

 
The role of parameter k 

  
Fig. 38.  2 max 2 min 1k f f     Fig. 38'. 

  

  
 

Fig. 39.  5 max 2 min 1k f f    Fig. 39'. 
 
For this reason Gielis proposed to chose as phase parameter the number 

4
m

k  . 

Thus the equation becomes   

(6)  
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6.1   The role of parameter m 
 

Let us discuss the fundamental role played by phase parameter  m , assuming 1a b r   , 
1 2 3 1p p p   . 

We start form the case of integer values for parameter m (see Fig. 40-48) 
 

m  integer 
 

  
 

Fig. 40.  0m   Fig. 41.  1m   Fig. 42.  2m   

  
 

 
Fig. 43.  3m   Fig. 44.  4m   Fig. 45.  5m   

 
 

  
Fig. 46.  6m   Fig. 47.  10m   Fig. 48.  20m   

 
For Lamè super-ellipses the plane is ideally divided into four parts (the four quadrants) and all 
the figures have the same four fixed points on the circle. 
Now the plane can be divided into m sectors.    As we can see from the previous images, the 
phase parameter allows the sides to bend in and out like a fan.   Moreover m determines the 
number of fixed points on the unit circle and the space between them.  In other words  m  
represents the number of rotational symmetries.   
 

Assume now that  m     is a rational number.   The figure will close after   rotations, 
while   determines the number of angles.   In particular, if m is integer, after a rotation the 
figure closes and in the subsequent rotations the figure remains unchanged (see Fig. 40-54). 
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 m  rational  
 

  
Fig. 49.  1 / 2m   

0 2      
Fig. 50. 3 / 2m   

0 2     
Fig. 51.  5 / 3m   

0 2     

 
 
 

  
Fig. 52.  1 / 2m   

0 2 2      
Fig. 53.  3 / 2m   

0 2 2      
Fig. 54.  5 3m   

0 2 3      
 

While if m is not rational, the figure generated after a single rotation does not close, as the 
following examples show (see Fig. 55-57).    
 

m  not rational 
 

 
 

  
Fig. 55.  m e   

0 6     
Fig. 56.  m e    

0 14     
Fig. 57.  m e   

0 28     
 

Of course the number of possible shapes increase greatly if we assume different values for the 
exponent p . 
In the particular case 1m  ,  we have a circle for 2p  , but for every 2p   the figures 
present an angular points (see Fig. 58, 59).   Precisely, for  0 p 2    the angular points is on 
the right, while for p 2  it is on the left (rotated by  ).    

 
 

Fig. 58.  1 0.3m p   Fig. 59.  1 5.000m p   
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In the particular case  2m    figures similar to the previous case are obtained, but with two 
angular points instead of one. 
 
 
7 Some examples: nature's forms and polygons 
 
The following images show the great potential offered by the variability of the parameters 
 

The role of parameter p1    (p2=p3=1, m=4) 
 
 

    
Fig. 60.  

1

2 3

16 1
10 0.3

m p
p p
 
 

 

Fig. 61.   

  1

2 3

3 0.5
10 0.3

m p
p p
 
 

 

Fig. 62.    
1

2 3

7 0.5
0.5 0.3

m p
p p
 
 

 

Fig. 63.    
1

2 3

3 10000
2018

m p
p p
 
 

 

 
 As we have already observed,  by means of formula (6) we can describe the circles, ellipses 
and rectangles.   Note that we can also represent all the regular polygons together with their 
concave and convex versions (i.e. sub-polygons and super-polygons), as the following images 
show. 

 
 
8   Superformula 
 
The final Gielis' generalization of equation (6) consists on replacing parameter r  with a 
function of the variable   

(8)                                    
2 3 1

1
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Of course, this innovation improves the performance . Let us discuss two remarkable 
particular cases. 
 

 
 

   
Fig. 64.    Fig. 65.    Fig. 66.    Fig. 67.    

1

2 3

3 5
10

m p
p p
 
 

 1

2 3

5 6.5
4.65

m p
p p
 
 

 1

2 3

6 10.65
4.65

m p
p p
 
 

 1

2 3

7 15
4.65

m p
p p
 
 
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8.1   Spirals 

Let us consider the particular case of the function 

( )R   

which is constant in each period, but whose argument increases with increasing periods. 
Inserted in the superformula it leads to the representation of spirals, as the following examples 
show.

Fig. 68.    Fig. 69. Fig. 70.    
1 2 36 100

0 12
m p p p   
   

2 3

1

10 5
8 0 8

m p p
p
  
    

1 2 34 100
0 8
m p p p   
   

 

Fig. 71. Fig. 72. Fig. 73. 
2 3

1

6 1
100 0 15

m p p
p
  
    

2 3

1

10 50 5
8 0 16

m p p
p
  
    

2 3

1

10 0,5 2
1 0 16

m p p
p
  
   

8.2   Flowers 

Function        ( ) cos
2
m

R   

admits   max ( ) 1R   ,   min ( ) 0R    and presents  m  maximum points and m minimum 
ones.    Inserted in the superformula it allows to represent flower petals, as the following 
examples show. 

Fig. 74.   5m   Fig. 75.   10m  Fig. 76.   16m 

p1  p2  p3  1  p1  p2  p3  1  p1  1 p2  p3  5
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Fig. 77.   5m   Fig. 78.   8m   Fig. 79.   12m 
1 23 1 10p p p   2 135 0.3 1p p p    2 130.1 5 1p p p    

The previous figures show that a different values of the parameters 2p  and 3p  produces 
asymmetries between the petals.   Parameter 1p   adjusts the roundness, as the following 
sequences of images shows (where 2 35 1m p p   ). 

Fig. 80. 1 0.3p   Fig. 81. 1 3p   Fig. 82. 1 30p 

9   A selected list of examles 

Let's now propose some examples, taken from ([1]), that testify superformula potentiality 
on a faithful reproduction of various forms of nature.  

1 3 22
10 5

1
0 2 2

a b m
p p p
  
 
    

 

Fig. 83.   Calys and sepals of roses. 

1 3 22.5
10 5

3.6 1.4
0 2

a b m
p p p
  
 
   

Fig. 84.   Succulent flowers. 
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2 3 15
10 5

1
0 2 2

a b m
p p p
  
 
    

 

 

Fig. 85.   Starfish. 

  

1 3 25.9
10 5

1 4.6
0 2 2

a b m
p p p
  
 
    

 

Fig. 86.   Flower. 

  
  2.55

2 3 15
1 10

8
0 14 2

a b m
p p p

R



  

  
 
    

 

Fig. 87.  Pleuroploca trapezium. 

  
  2.4
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Fig. 88.   Architectonica perspectiva. 
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Fig. 89.   Diatomee. 
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